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Abstract

Advances in modern technologies and computers have enabled digital image processing to become a
vital tool in conventional clinical practice, including mammography. However, the core problem of the
clinical evaluation of mammographic tumors remains a highly demanding cognitive task. In order for
these automated diagnostic systems to perform in levels of sensitivity and specificity similar to that of
human experts, it is essential that a robust framework on problem-specific design parameters is
formulated. This study is focused on identifying a robust set of clinical features that can be used as the
base for designing the input of any computer-aided diagnosis system for automatic mammographic
tumor evaluation. A thorough list of clinical features was constructed and the diagnostic value of each
feature was verified against current clinical practices by an expert physician. These features were
directly or indirectly related to the overall morphological properties of the mammographic tumor or the
texture of the fine-scale tissue structures as they appear in the digitized image, while others contained
external clinical data of outmost importance, like the patient’s age. The entire feature set was used as
an annotation list for describing the clinical properties of mammographic tumor cases in a quantitative
way, such that subsequent objective analyses were possible. For the purposes of this study, a
mammographic image database was created, with complete clinical evaluation descriptions and
positive histological verification for each case. All tumors contained in the database were characterized
according to the identified clinical features’ set and the resulting dataset was used as input for
discrimination and diagnostic value analysis for each one of these features. Specifically, several
standard methodologies of statistical significance analysis were employed to create feature rankings
according to their discriminating power. Moreover, three different classification models, namely linear
classifiers, neural networks and support vector machines, were employed to investigate the true
efficiency of each one of them, as well as the overall complexity of the diagnostic task of
mammographic tumor characterization. Both the statistical and the classification results have proven
the explicit correlation of all the selected features with the final diagnosis, qualifying them as an
adequate input base for any type of similar automated diagnosis system. The underlying complexity of

the diagnostic task has justified the high value of sophisticated pattern recognition architectures.
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1. Introduction

Breast cancer is the most common cancer type and the second most common death cause in women in
civilized world. Screening mammography, for detecting early breast cancer in asymptomatic women,
increases the likelihood for cure and long-term survival. However, in cases of indeterminate
mammographic findings, breast biopsy may be required. Avoiding unnecessary biopsies is important
due to the discomfort, cost and probable breast scars inflicted upon the patients, which may cause

diagnostic difficulty in future mammographic examinations.

The diagnostic and clinical evaluation of mammographic images constitutes a difficult and complex
cognitive task, which requires advanced levels of expertise and knowledge by the trained physicians.
Mammographic screening, for the identification of abnormalities and the pathological characterization
of breast tissue, is a visual task that combines several aspects and x-ray findings, presented in various
areas of the mammographic image, as well as external data available through each patient’s clinical
history. Specific clinical findings, such as the morphological properties and fine-scale structural
information of the underlying tissue, are the key factors in characterizing the severity of every
mammographic tumor, i.e., its benign or malignant nature [01]. Modern computer technology can be
used to implement automatic image processing and analysis of various aspects of these findings, thus
supporting effectively the expert’s evaluation as a valuable suggestive tool. However, the exact task of
tissue characterization and classification of a tumor, as probable benign or probable malignant, is
extremely complex and includes advanced inference mechanisms [02-03]. Consequently, computer-
aided diagnosis (CAD) systems focus on specific aspects of the diagnostic process, such as the
identification and analysis of microcalcifications or the detection of irregular tissue structures, each
suggestive of specific abnormalities [04]. Therefore, it is essential that these morphological and textural
properties are defined in detail as a specific list of qualitative features that can be formulated into a

robust set of corresponding quantitative measurements.

This study focuses on three core issues: (a) to investigate efficient mammographic features, already
used in current clinical practice for the pathological evaluation of mammographic tumors, (b) to assess
their diagnostic value with objective statistical and classification methods, and (c) to formulate a robust
quantitative model for using them as the input for any automated image analysis method. Specifically,

a complete and coherent set of clinical features was constructed, by exploiting significant pathological
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factors, related to mammographic abnormalities and directly or indirectly suggestive of probable
malignant cases of breast tumors. The information content of these features is related to the
mammographic image itself, namely the morphological and textural properties of the tumor’s area, or
external data obtained by the patient’s clinical history. Subsequently, this set of qualitative descriptive
estimations, supplied by the expert physician’s subjective evaluation, was quantified and translated into
a robust dataset. This dataset was used in statistical and classification analysis schemes, employing a
wide range of discrimination evaluations, ranging from standard significance tests, to advanced pattern
recognition architectures. The results obtained during this analysis can be used for objective
comparative studies, as well as to produce ranking lists of clinical features in accordance to their true
diagnostic value. These features and their relative discriminative power constitute the input
specifications and guidelines, which are essential for any type of automated tumor diagnosis system

that is based on morphological, textural or descriptive datasets.

2. Materials and Methods

The current study was based on four distinct issues: (1) Create a thorough list of abnormal findings
regarding diagnostic evaluation of a mammogram, especially related to image textural and
morphological features of the underlying tissue. From this list, the most prominent and content-rich
features were to be selected, according to their suitability for automatic extraction through image
processing algorithms. (2) Create a specialized mammographic image database, containing clearly
identifiable and histologically verified cases of benign or malignant tumors. All cases were evaluated
and annotated in relation to the previously defined list of important clinical features. (3) Analyze the
newly constructed set of mammographic images in relation to the feature list, focusing especially on
investigating the importance, comprehensiveness and consistency of each one of these features when
correlated with the verified final diagnosis. (4) Investigate the performance of individual features, as
well as subsets of combined features, when used as real training datasets for various classifier

architectures, i.e., linear classifiers, neural networks (NN) and support vector machines (SVM).

2.1 Mammographic Features List
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The first phase of the study included an extensive research through various aspects of identifying and
evaluating numerous radiologic findings in mammographic images, related to benign and malignant
abnormalities. The investigation was conducted by enumerating and documenting all the morphological
and textural tissue characteristics, which are recognized and evaluated by the experts when they
conduct a clinical diagnosis [05-07]. Furthermore, an additional list of other important features, like
patient’s age and clinical background, were also included in this list. Some of the features, like the
presence of suspicious masses or microcalcifications, are normally related directly to abnormalities,
while others, like the exact location and size of the mass, are usually evaluated as intermediate

suggestive indications of benignancy or malignancy [02-03].

The complete list of the 31 features, along with direct indications of benign and malignant biopsy
results, is summarized in Table 1. The features were grouped in categories according to the general
type of abnormality they refer to. The “CPU” column refers to the capability of relating the
corresponding features to image processing algorithms, which can automatically extract specific
content-related information. Advanced algorithms for automated mammographic lesion detection have
been proposed, however their level of sensitivity and specificity, as well as their fine-scale accordance
to the corresponding expert’s detailed description of tumor boundaries, is still under investigation [04,

08].

It is obvious that some of the above features, although very important, are not directly related to the
mammographic image by itself and, thus, they have to be provided as external annotation data for each
case by the physician [05-06]. Furthermore, not all of them are related to the clinical characterization of
tumors, which is the main concern of the current study. Subsequently, a robust, content-rich subset of
features was constructed, using selected features that are highly related to tumor benignancy or
malignancy and, at the same, time refer to textural and morphological characteristics of the tumor, i.e.
to objective image properties. These feature selections were also based on the general requirement that
the features can be automatically extracted and processed. In this case, the features that are extracted
from the image can be linked directly or indirectly to morphological or textural properties of the tissue
inside and around the tumor area, as it appears on the image itself [09-12]. Qualitative or descriptive

features were scaled in numerical ranges or percentages, in order to acquire quantitative data values.
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Both the final feature list selections, as well as the exact quantification scales, were defined in

cooperation with an expert physician in order to ensure complete and detailed clinical results.

The final set of 9 clinical features was the base for the annotation list, which was used to describe and
document the expert’s clinical evaluation for each mammographic image in the database. Specifically,
(1) the presence of tumors, (2) the presence of microcalcifications, (3) the tumor density, (4) the
percentage of fat within the tumor, (5) the tumor boundary vagueness, (6) the tumor homogeneity, (7)
the tumor morphological shape type, (8) the patient’s age, as well as (9) the final histologic diagnosis,
were included. As the patient’s age remains a feature of high clinical importance, it was also included
in the final annotation list as a unique “external” data, although it cannot be referred directly from the
mammographic image itself [05-06]. Finally, the morphological shape type refers to the classification
of the tumor’s shape in one of four predefined shape categories, related to tumor’s boundary roughness
and stellate or lobulated outline. These four categories, illustrated in Figure 1, are defined as round,
lobulated, micro-lobulated and stellate, and their ranking is directly related to their pathology, from

benign to malignant, respectively [13-16].

These quantified properties are essentially explicit information related to specific types of malignant
mammogram abnormalities, including architectural distortion, clusters of microcalcifications, lobulated
or stellate masses, as well as skin oedema [07]. Thus, the initial annotation list constitutes a complete
dataset that provides significant diagnostic data, which has been used for further statistical and
clustering analysis. The final annotation list, containing the selected features and quantification scales,

is presented in Table 2.

2.2 Mammographic Image Database

The second phase of the study included the creation of a thorough mammographic image database,
especially designed to focus on cases of tumor presence with histological verification as benign or
malignant by an expert physician. The requirement for patient’s clinical history and positive
histological verification of the benignancy or malignancy of each case was assessed as one of extreme
importance for the quality and validity of the subsequent results. Thus a new, special-purpose image set
was assembled, using cases of mammographic tumors with complete radiologic evaluation and

histologic diagnosis. The initial set contained several hundreds standard mammograms and it was used
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as a base for the final selection of tumor cases with positive clinical verification by surgical biopsy and
histologic examination. The selected subset was constructed in accordance to the general requirement
for complete and unbiased statistical distributions over all the radiologic findings investigated in the

study.

The selected mammogram films were digitized at a typical resolution of 63 um (400 dpi) with 8-bit
graylevel depth, in order to retain fine scale textural and structural tissue characteristics. Furthermore,
some additional post-processing was applied uniformly over all the selected images, using optimized
unsharp filtering for image enhancement with minimal spectrum alteration. The resulting images were
evaluated and verified by the expert as acceptable in terms of image quality and resolution. The final
set of 130 images of histologically confirmed lesions (46 benign and 84 malignant) was used as the
base for all the subsequent analysis presented in this study, with no reduction in spatial resolution or

graylevel depth.

Subsequently, every mammographic image in the database was evaluated by two expert radiologists
and all the important findings were recorded separately for each case, using the annotation list that was
created during the previous phase of the study. As the tumor’s shape is one of the most important
morphological properties for clinical characterization, it was essential that shape type information was
provided by the expert and registered into the annotation list. In addition, for further morphological and
textural analysis capabilities at some later stage, it was crucial that every tumor was clearly described
and registered by defining its boundary outline. In order to obtain tumor boundaries of high quality and
detail, a manual segmentation was applied. Specifically, each tumor was manually described by the
radiologists using a high-resolution digitizer device and stored as an embedded boundary descriptor via
alpha channel data. These boundary descriptions were used for further independent work on the
definition of mass inclusion masks and boundary zones for textural features extraction at these areas of

interest.

2.3 Statistical Analysis

Statistical analysis was conducted on the data obtained through the annotation list in three groups:
benign cases, malignant cases and all cases. For each of these groups, normal distribution

approximation parameters, i.e., mean value and variance, were calculated and the results were
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investigated under statistical significance analysis and projected aliasing errors [17]. Specifically, for
mean values calculated separately for each case grouping, significance ranges were estimated
according to the current group size and variance. Subsequently, feature distributions for each group
were approximated by normal distributions and the statistical error was calculated according to the
optimal limiting value separating two different classes, i.e., benign and malignant cases, using each
individual feature. In other words, for every individual feature contained in the annotation list, an
optimal decision threshold was calculated and the corresponding classification errors for the benign and
malignant cases were used as an indicative measurement of statistical aliasing. As an example, the use
of tumor boundary sharpness, as the sole discrimination feature for bimodal normal distribution

modeling, is illustrated in Figure 2.

The features were also processed through Univariate significance analysis, specifically T-test [18].
Multivariate significance analysis was also applied, using the Multivariate Analysis of Variance
(MANOVA) method [19]. In both cases, every feature was investigated separately under statistical
dependence hypotheses in relation to the diagnosis and the results formulated a quantitative ranking,

regarding the correlation between each feature and the diagnosis.

2.4 Classification Analysis

In order to assess the discriminative power of each one of the qualitative clinical measurements, several
classification schemes were applied against the verified diagnosis for each case. Pattern recognition
techniques include various types of decision-theoretic approaches for data analysis and classification,
and have been proven extremely valuable to real problems of high complexity such as the task of
mammographic diagnosis. In this study, several of the standard linear and non-linear classifiers were
used in order to evaluate both the true performance of these features, as well as the overall complexity

of the problem itself [18].

Both linear and non-linear classification architectures were employed for every dataset configuration.
Specifically, optimization of the best feature set was investigated by applying exhaustive search
through all the combinations of features, in order to identify the ones that yield maximum

discrimination capability and optimal performance. Furthermore, the performance of each classifier
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was evaluated through extensive use of k-fold cross validation techniques, specifically leave-one-out

and leave-k-out methods [20].

For linear classification testing, three standard models were considered. Linear Discrimination
Analysis (LDA) was applied in the form of classifier, using iterative subsets of the initial training set
and employing leave-one-out classification for every individual pattern in the set [21]. A Minimum
Distance Classifier (MDC) with Mahalanobis distance function was employed in combination with
Least-Squares data transformation for better statistical compactness, yielding the Least-Squares

Minimum Distance Classifier (LSMD) that was used in this study [18].

Additionally, a typical Nearest Neighbor classifier with variable neighborhood size (K-NN) was

employed, using the neighborhood size K as an optimization parameter [18].

From the various types of typical non-linear classifiers, two representative neural architectures were
considered. A Multi-Layered Perceptron (MLP) neural network model was used, using the back-
propagation algorithm for training, employing topology optimization and various choices for the
neuron activation functions, specifically softmax, hyperbolic tan and hard limiter [22]. Similarly to the
MLP, a Radial Basis Function (RBF) neural network architecture was also employed as a kernel-based
alternative, using Gaussian activation functions and optimized topology [23]. For neural network
classifiers, no feature reduction was necessary, as the neurons of the (trained) input layer could be
examined in order to discard features that correspond to input weights with zero or near-zero values
[24]. In other words, the architecture of the neural networks favors the automatic ranking of the inputs
during the training phase, in a way that the final classifier can be examined in order to identify

significant and non-significant features.

For more advanced investigation of the feature set, typical Support Vector Machine (SVM) models
were applied in relation to the final diagnosis. Specifically, the C-SVC model was used in combination
with standard RBF kernel functions, optimizing the penalty factor (C) and the Gaussian spread
parameter (o) during training [25]. SVM classifiers employed limited feature set optimizations, using
iterative runs of enlarging inclusions of several features, available on the feature ranking lists created
by MANOVA significance analysis. Due to the statistical importance of the shape type feature, all

classifications were considered both with and without the inclusion of this specific feature.
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3. Results

Preliminary analysis on the initial dataset has confirmed the strong statistical correlation between
morphological shape type and verified diagnosis of breast tumors in the mammograms. Specifically,
the first two types of morphology, round and lobulated tumors, exhibited 17% and 5% of malignancy,
respectively, within the same class. On the contrary, micro-lobulated and stellate types exhibited 95%
and 97% of malignancy, respectively, as illustrated in Table 3. When combining the round and
lobulated cases, the overall percentage of malignancy was 12%, while for combined micro-lobulated
and stellate cases, the overall percentage of malignancy was 96%, as illustrated in Table 4. This high
statistical dependency of specific morphological features of each tumor with its verified pathology
confirms the clinical value of its shape when conducting a pathological evaluation of a mammogram. It
should be noted that if the shape type feature were to be used as the sole input for predicting the final

diagnosis, an accuracy rate just over 93% could be achieved.

3.1 Statistical significance analysis

Global statistics of the dataset were calculated for every individual feature in relation to the final
diagnosis. The properties and differences in the resulting bimodal normal distributions, for benign and
malignant cases, revealed the discriminating power of each individual feature, as well as the
corresponding significance ranges for the mean values. The mean value and standard deviation of each
feature were used for constructing a bimodal normal distribution statistical model, while the
corresponding aliasing error between the two kernels was used to evaluate the statistical separability of
benign and malignant cases, according to this feature. Figure 2 presents a graphical display of using
boundary sharpness for this type of statistical modeling. Table 5 summarizes the complete results of
these tests, while Table 6 summarizes all types of statistical discrimination modeling, including T-test,
F-test and bimodal normal distribution modeling. Although some tests were not applicable to specific
features due to statistical limitations (e.g., zero variance or non-separable Gaussian distributions), early
conclusions on the discrimination power of each individual feature could already be drawn from these

early tests.
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Furthermore, in order to produce feature rankings, which take into account statistical dependencies
between the individual features, MANOVA was applied, investigating the discriminating power of

each feature against the final diagnosis, as well as its independency to all the other features.

Table 7 summarizes the feature rankings for all statistical significance analysis methods applied in this
study. The results obtained by bimodal normal distribution modeling, Univariate and MANOVA were
generally similar and consistent, producing feature rankings with little differences in the exact ordering

with regard to the importance of each feature.

3.2 Classification results

Classifications results were used as guidelines for evaluating the performance of individual features, as
well as identifying optimal feature combinations. Classification accuracy rates were thoroughly

investigated for all classifier models and comparative results were obtained against the final diagnosis.

3.2.1 Individual features evaluation

Datasets of single feature inclusions were constructed for conducting discriminating power analysis
against diagnosis, using a typical LSMD classifier. The complete results for individual feature
classification configurations are summarized in Table 8. Similarly to the results already obtained by
statistical significance analysis, the morphological shape type of the tumor proved to be the most
correlated feature with regard to final diagnosis. When patient’s age and shape type features were
excluded, optimal feature combinations, which were selected by the classifier, included tumor’s
boundary sharpness, fat inclusion percentage and tumor homogeneity, yielding a maximum accuracy
rate of 86,9%. The introduction of patient’s age into the set of input features also produced optimal
configurations, achieving 89,2% accuracy. Classification results analysis showed that for feature
combinations without shape type inclusion, the accuracy ranged from 87,7% up to 91,5%, while for
feature combinations that included shape type information, the accuracy ranged from 91,5% up to

93,1%, essentially verifying the explicit discriminating value of this specific feature.

3.2.3 Comparative classifier performance

For a more realistic performance analysis for optimized feature combinations, a wide range of linear

and non-linear classifiers were used. Linear classifiers included exhaustive search through all feature
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subsets for identifying optimal feature combinations, while NN and SVM classifiers used full feature
sets or optimal feature subsets, already available through the linear classifiers. Table 9 summarizes the
highest accuracy rates achieved by each classifier, with and without the inclusion of shape type

information.

The LDA classifier exhibited an accuracy rate of 87,69% when using an optimally selected feature set
of patent’s age and tumor’s boundary sharpness. When the shape type feature was included in the input,
the optimal feature set was constituted of the tumor’s boundary sharpness and shape type features, and
the accuracy rates were raised up to 93,85%. It should be noted that this particular accuracy rate was
marginally higher than the statistical dependency of tumor’s shape type versus its final diagnosis,
namely 93,08%, thus proving the importance of combining several features to construct optimal feature

subsets.

Similarly to the LDA, the optimized K-NN classifier achieved an accuracy rate of 91,54% when using
all the available features except shape type and 93,08% when including shape type information. In fact,
the optimal feature subset in the second case was constituted only by the shape type feature itself,
essentially implementing the statistical classifier of grouping round and lobulated cases as probable
benign, and micro-lobulated and stellate cases as probable malignant. There was no clear indication
regarding the overall optimal value for the neighborhood size, although most configurations of high

accuracy employed sizes of 3 to 8 neighboring samples.

For the LSMD classifier, success rates were similar to the K-NN. Specifically, an accuracy of 89,23%
was achieved when using all the available features except shape type information and 93,08% when
using the shape type feature as well. As in the case of K-NN, the shape type feature dominated the
optimal feature subset and the resulting classification scheme is analogous to the suggestive statistical
grouping of round and lobulated cases as probable benign, and micro-lobulated and stellate cases as

probable malignant.

Both the MLP classifier and the RBF neural classifiers employed full feature sets and optimized size
for the hidden layer. The MLP classifier yielded an accuracy of 91,54% when no shape type
information was available, using 1 or 4 hidden units and linear activation function. The inclusion of the

shape type feature did not affect the overall accuracy rate, although it resulted in many more

page 13



configurations achieving this maximum efficiency. Similarly, the RBF classifier achieved an accuracy
0f 90,77% without shape type feature inclusion (using 8 hidden units) and 91,54% with shape type

feature inclusion (using 5 hidden units).

The SVM classifier, employed in this study as a representative candidate of this family, was the C-SVC
model (penalty-driven SVM classifier) with radial basis kernel function (RBF). For feature lists with
shape type information excluded, the accuracy rates achieved by the SVM classifier were 93,85% even
when using only the first 4 features from the ranking list, namely tumor’s boundary sharpness, patent’s
age, percentage of fat inclusion and tumor homogeneity. For feature lists including the shape type
property, the accuracy rates achieved by the SVM classifier were 94,62%, conclusively higher than the
statistical correlation between shape type and diagnosis. As expected, the shape type feature was
included in all optimal feature subsets achieving this level of performance. Although no clear
conclusions can be drawn regarding the exact choices on the values of SVM parameters C and o,
analysis of the various SVM configurations have shown that the values of the penalty factor C, namely
between 1 and 10, were inversely proportional to the corresponding values of function spread

parameter ¢, namely from 0,1 down to 0,01.

4. Discussion

Results from statistical significance analysis reveal the high correlation between most of the qualitative
features in the annotation list and the final diagnosis. Morphological shape type of the tumor’s outline
exhibits the highest dependency in relation to the diagnosis, yielding the specific feature as adequate to
provide discrimination capability for correctly classifying benign and malignant cases with success
rates up to 93%. Several other features, such as tumor boundary sharpness, tumor homogeneity, as well
as patient’s age, have proven as important clinical aspects of the expert’s evaluation. All the features
contained in the annotation list exhibited some degree of correlation to the diagnosis, thus qualifying
them as plausible for automatic diagnosis systems, although in most cases optimal combinations of

several features have to be used, instead of single features.

The discriminating value of each individual feature was confirmed by several statistical significance

properties, including T-test, F-test, MANOVA, bimodal normal distribution error estimation and mean
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value significance range, as well as real classification runs using a typical LSMD classification scheme.
Although the feature ranking lists, created using the results of these analysis methods, differ slightly on
the exact ordering of the features, some basic conclusions could be drawn with regard to the overall
quality of each individual feature. Specifically, the morphological shape type of the tumor, namely its
classification in one of the round, lobulated, micro-lobulated or stellate categories, has been established
as the most important feature. Round and lobulated cases have been proven highly correlated to
benignancy, while micro-lobulated and stellate cases have shown high correlation to malignancy, as
Table 3 and Table 4 show. For combined features configurations, optimized sets containing the shape
type feature exhibited 3% to 4% higher success rates than the ones without it, when used in real
classification schemes of both linear and non-linear models. Subsequently, tumor boundary sharpness
or fuzziness was clearly suggestive to benign or malignant tumors respectively, as Table 8 shows.
Another important feature was the overall density of the tissue that constitutes the tumor, as dense
tissue samples of abnormal physiology are typically related to malignant growth rate of the cells in
those areas [02, 07]. Tumor’s homogeneity and percentage of fat inclusion were also important when
combined together or with some other feature of high discriminative quality, although none of them
could provide high success rates when used individually. Patient’s age has been used as a good
representative of features provided as “external” annotative information by the physician, as it is not
directly related to the informative content of the mammographic image itself, but rather on clinical data
from patient’s history. However, it proved to be a very important aspect of the overall clinical
evaluation of each case. Finally, the indicative feature of microcalcifications’ presence was included in
several optimal feature combinations, although it shown minimal discriminative value when used

individually to predict benignancy or malignancy.

All features, except patient’s age and tumor’s shape type, refer directly or indirectly to textural
properties of the tumor area as it appears in the mammographic image. However, the shape type was
evaluated as the most important feature contained in the annotation list. This means that, in order to
have a fully automated diagnosis system that is based on objective feature measurements of various
textural properties, several of these features have to be optimally combined. In any case, both
morphological and textural features can be formulated into a well-defined set of extraction functions,
capable of implementing objective estimators of various morphological and textural properties of each

tumor, as it appears in the mammographic image. This would be very helpful to the estimation of the
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correct radiologic diagnosis as an adjunct tool to the physician and the in future a complementary

system combined with a CAD.

With regard to best classifier performance, the efficiency of non-linear architectures over linear
equivalents was proven in almost all cases. Regarding the prediction of the final diagnosis, the
performance of all classifiers was evaluated separately when including or excluding the shape type,
which was the most dominant feature in the set. For feature sets without any shape type information
inclusion, optimized K-NN classifier achieved the best results over LDA and LSMD alternatives.
Similar feature sets containing the shape type feature produced results with no significant preference
towards any of these three classifiers. These results were closely matched or exceeded by several MLP
and RBF NN configurations, especially in the case of excluding shape type information. Although the
best accuracy rates in some cases were produced by linear, instead of non-linear, classifiers, it should
be noted that NN classifiers used only complete feature sets or feature combinations already calculated
as optimal for linear equivalents. Both MLP and RBF models required a larger number of hidden units
when shape type information was excluded, while the inclusion of the specific feature essentially
simplified the discrimination process and thus concluded in topologies with lesser hidden units. The
overall performance of MLP architectures was marginally higher than RBF equivalents, employing

much smaller hidden layers and greater degrees of generalization.

The SVM classification schemes yielded overall maximum accuracy rates, both when the shape type
feature was excluded or included in the input vector, higher than the corresponding maximum rates of
any other linear or NN alternative investigated in this study. Thus, a representative application of
advanced SVM models, compared to several linear and NN classification schemes, is suggestive to
their superiority in classification problems that exhibit high degree of non-linearity in the training

datasets.

5. Conclusion

The problem of identifying image features characterizing the overall morphology and fine-scaled
structural properties of the tissue in mammographic tumors, as well as external clinical data, was

investigated using objective statistical analysis and pattern recognition approaches. Therefore, although
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the initial descriptive data were qualitative in nature, the translation into quantitative values and their
thorough processing via advanced pattern analysis algorithms, produced objective evaluations and

discriminating power estimations of their true efficiency.

All the selected features have shown some degree of dependency to the final diagnosis, while some of
them, such as morphological shape type, provided discriminating levels high enough to be used even
individually for tumor classification schemes. Optimal feature sets, employed in advanced non-linear
classification architectures, like SVM classifiers, provided accuracy rates up to almost 95%, thus
proving their efficiency and making such systems plausible for clinical application. All features
investigated in this study, except patient’s age, are related to morphological and textural properties on
the mammographic image itself, therefore a completely automated diagnosis system, using the same

content-rich descriptive features, is feasible.

Statistical and classification analysis results have shown that, although the selected feature sets were in
fact content-rich with regard to their diagnostic value, the diagnostic process itself remains a complex
and demanding task. The high degree of non-linearity employed in the discrimination of the input data
with regard to diagnosis prediction suggests that automatic diagnosis systems should implement
powerful pattern recognition models of non-linear and highly adaptive architecture. Future work should
be focused on designing specialized image processing algorithms for efficient automatic extraction of
morphological and textural features, combined with robust implementations of advanced classification
architectures, such as SVMs. Automated diagnosis of breast mammographic abnormalities, combined
with CAD systems, which indicate suspicious lesions in mammograms, will be a very powerful tool in
the hands of the mammographic departments and the reporting physicians, especially the less

experienced ones.
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Figure 1 — Morphological shape type representations of mammographic tumors.

Figure 2 — Likelihood probability distributions of tumor boundary sharpness versus diagnosis and the
corresponding bimodal normal distribution. Interference between the two normal distribution curves
constitutes the statistical error probability due to aliasing between the two classes. The true aliasing
error was calculated by applying the specific decision threshold for boundary sharpness indicator in the

current set of 130 mammographic images.
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Table 1 — Clinical findings and features normally implicated in mammogram evaluation.

FEATURES LIST

MORPHOLOGICAL
DATA

TEXTURAL
DATA

OTHER

CPU

DocToRr

TuMOR

Intramammary node

Size (general view)

Inclusion of fat (%)

ANRN

Degree of irregularity

Type of irregularity

Stellate border

ASRANAN

Indistinct border

Density (hypo/iso/hyper)

Homogeneity

ASRANAN

Location

Diameter

Boundary shape (type)

ANRN

ASRNR A NANANEN

ANRNENERNANANENENANANENEN

MICROCALCIFICATIONS

Size of cluster (general view)

Number of elements

Shape of cluster

Variability of size of elements

ASRNRNAN

Irregular shape of elements

ANRN

Linear or branching elements

AN

ASRNRYANASAN

SECONDARY SIGNS

Architectural distortion

Asymmetric density

Skin thickening or retraction

Regional calcifications

ASRNRNAN

ASRNRNAN

PREVIOUS HISTORY

Availability

Comparability

Existence of abnormality in previous study

ASRANAN

ASRANAN

CORRELATION WITH CLINICAL FINDINGS

Availability

Correlation: location of clinical findings with
radiographic study

Correlation: size/extent of clinical findings with
radiographic study

Level of suspicion due to clinical findings

AN NE R NN

AN NE R NN

OTHER DATA

Age

Benign / Malignant (histological)

ANRN

ANRN
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Table 2 — Final annotation list and quantification details.

Qualitative Feature | Range

Patient’s Age (true age)

Mass Existence Yes / No

Mif:rocalciﬁcations Yes / No

Existence

Fat Percentage 0%...100%

Boundary Sharpness | 0%...100%

Mass Density L (hypo) / M (iso) / H (hyper)

Mass Homogeneity

1...10

Mass Shape Type

1 (round) / 2 (lobulated) /
3 (micro-lobulated)/ 4 (stellate)

Hisologic Diagnosis

B (benign) / M (malignant)
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Table 3 — Distribution of the 4 morphological shape types against diagnosis. Percentages are calculated

per column.
Round Lobulated Micro- Stellate
lobulated
Benign 25 18 2 1
83% 95% 5% 3%
Malignant 5 1 41 37
17% 5% 95% 97%
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Table 4 — Distribution of the “1+2” and “3+4” grouped morphological shape types against diagnosis.

Percentages are calculated per column.

Benign

Malignant

Round + Lobulated

Micro-lobulated +

Stellate
43 3
88% 4%
6 78
12% 96%
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Table 5 — Statistics of benign and malignant cases. Cells indicating

[T3R L)

mean that the specific parameter

could not be calculated due to zero variance. All confidence ranges for mean values were calculated for

significance level (alpha) 0,95.

BENIGN Mean Standard Skewness Kurtosis Mean
(cases: 46) Deviation Conf.Range
Patient’s age 47.457 8,939 0,119 1,623 +2,583
Microcalcifications 0.783 0,417 -1,417 0,006 +0,121
Presence
5 -
Fat% Inclusion 0.126 0,270 2,208 3,539 + 0,078
Boundary 0,808 0,205 -2,925 8,514 + 0,059
Sharpness
Tumor Density 0.326 0,701 -0,555 -0,781 +0,203
Tumor 7,109 1,464 -0,951 0,979 +0,423
Homogeneity
Tumor Shape Type 1,543 0,690 1,324 2,215 +0,199
MALIGNANT Mean Standard Skewness Kurtosis Mean
(cases: 84) Deviation Conf.Range
Patient’s age 57.631 9,079 0,098 -0,188 + 1,942
Microcalcifications 0.810 0,395 -1,605 0,590 + 0,084
Presence
5 -

Fat% Inclusion 0,000 0,000 - - -
Boundary

0,255 0,264 1,017 -0,032 + 0,056
Sharpness
Tumor Density 0.798 0,485 2,420 5,260 +0,104
Tumor . 5,381 1,605 0,266 -0,328 + 0,343
Homogeneity
Tumor Shape Type 3310 0,776 -1,398 2,394 + 0,166
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Table 6 — Test statistics of benign versus malignant cases. For F-test values, cells indicating

that the specific parameter could not be calculated due to zero variance. Class boundary values
indicating “N/S” mean that the clustering of the specific feature could not be qualified as bimodal

normal distribution model, i.e. it could not produce any linear discrimination on the base classes.

- mecan

STATISTICS Classes Boundary | T-test Value F-test Value Statistical Error

(BEN.vs.MAL) Errors Probability

Patient’s age 47,791 1,704e-08 0,926 29 22,31%

Microcalcifications N/S 0,721 0,660 - -

Presence

5 -

Fat% Inclusion N/S 0,003 _ . -

Boundary )
0,601 1,041e-24 0,067 15 11,54%

Sharpness

Tumor Density N/S 0,127e-03 3,801e-03 - -

Tumor 7,006 1,181e-08 0,505 34 26,15%

Homogeneity

Tumor Shape Type 2226 3,890e-24 0,392 9 6,923%
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Table 7 — Feature ranking lists produced by T-test, bimodal normal distribution errors and MANOVA
evaluations against diagnosis. For non-linearly separable bimodal normal distribution cases, the overall

shape and aliasing of the underlying distributions are considered instead of true misclassification errors.

T-test ranking Bin.Dist.Err. ranking | MANO VA ranking

Boundary Sharpness | Mass Shape Type Mass Shape Type
Mass Shape Type Boundary Sharpness Boundary Sharpness
Patient’s Age Patient’s Age Patient’s Age

Mass Homogeneity Mass Homogeneity Fat Percentage
Mass Density Mass Density Microcalcifications?
Fat Percentage Fat Percentage Mass Homogeneity
Microcalcifications? | Microcalcifications? Mass Density
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Table 8 — True discrimination efficiency of individual features through LSMD classification.

Qualitative Feature LSMD succ% - diag.
Mass Shape Type 93,1%
Boundary Sharpness 86,1%
Fat Percentage 74,6%
Mass Density 73,1%
Mass Homogeneity 73,1%
Patient’s Age 68,5%
Microcalcifications? 60,8%
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Table 9 — Success rates of all classifiers against diagnosis prediction, with and without shape type

input.

TARGET: TUMOR DIAGNOSIS
) Accuracy (%)  Accuracy (%)
Classifier Model  without shape including shape

type info type info

LDA 87,69% 93,85%
K-NN 91,54% 93,08%
LSMD 89,23% 93,08%
MLP 91,54% 91,54%

RBF 90,77% 91,54%
C-SVC/RBF 93,85% 94,62%
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Figure 1 — Morphological shape type representations of mammographic tumors.
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Figure 2 — Likelihood probability distributions of tumor boundary sharpness versus diagnosis and the

corresponding bimodal normal distribution. Interference between the two normal distribution curves

constitutes the statistical error probability due to aliasing between the two classes. The true aliasing

error was calculated by applying the specific decision threshold for boundary sharpness indicator in the

current set of 130 mammographic images.
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