
ΜEΘΟΔΟΙ PREDICTIVE ANALYTICS ΣΕ  
BIG MOBILITY DATA ΚΑΙ ΙΑΤΡΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 

12 Δεκ. 2018 @ Ινστιτούτο Πληροφοριακών Συστημάτων (ΙΠΣΥ), 
Ερευνητικό Κέντρο “Αθηνά” 

Χάρης Γεωργίου (MSc,PhD) 

Data Science Lab @ Πανεπ. Πειραιά 

Email: harris@xgeorgio.info 



Overview 
 

 DART – Data-driven AiRcraft Trajectory prediction research 

 datAcron – Big Data Analytics for Time-Critical Mobility Forecasting 

 Track & Know – R&D in Big Data Mobility in transport, insurance & health 

 

 Assurance – Sparse model learning in health Informatics (fMRI)  →  ΕΚΠΑ 

* See: H. Georgiou et al. (2018), “Predicting the next steps of moving objects: A survey”. (under preparation)  

* See: Y. Kopsinis, H. Georgiou, S. Theodoridis (2014). “fMRI Unmixing Via Properly Adjusted Dictionary Learning”,  

22nd European Signal Processing Conference (EUSIPCO 2014), 1-5 Sept 2014 @ Lisbon, Portugal. 





 The Data Science Lab at the 

Univ. Piraeus, established in 

2015 

 Aims advance research on a 

wide range of Data Science 

subjects, including:  

 big data management 

 statistics and data (incl. 

text, audio) analytics 

 machine learning 

 semantic integration 

 mobility data exploration 

 data privacy 



Data-driven AiRcraft Trajectory  

prediction research 



 Trajectory Prediction in the Aviation domain is devoted to the analysis and evaluation 

of a wide range of data-driven techniques that could potentially be applied to the 

aircraft trajectory prediction problem. 

 Main specific research objectives addressed: 

 Study of the application of Big-data techniques to trajectory-related data gathering, 

filtering, storing, prioritization, indexing and segmentation to support the generation 

of reliable and homogenous/fused input datasets. 

 Study of different data-driven learning techniques to describe how a reliable 

trajectory prediction model will leverage them. 

 Exploration of advanced visualization processes for data-driven model algorithms 

design, tuning and validation, in the context of 4-D trajectories. 

* See: H. Georgiou et al. (2018), “Predicting the next steps of moving objects: A survey”. (under preparation)  



DART Surveillance 
Data 

Weather 
Data: NOAA 

forecasts, 
SIGMENT, TAF  

Flight Plans  
Airspace 
Structure 

Reconstructed 
Trajectories 

Aircarft Intent 
Descriptions 



DART 
Example: Madrid/Barcelona route 
(about 700 flights per month per direction) 



TP-C: fastICA spectrum of FP/RT dataset, Lat-only 



DART 

Basic idea – Method outline: 
 

1. Input: Flight plans, actual routes, 
local weather, aircraft type, (...) 

2. Stage-1: cluster the actual routes, 
produce semantic-aware medoids as 
“representatives” 

3. Stage-2: Build a Pred.Model for each 
medoid, associate it with the cluster 
flight plans (emissions) 

4. Stage-3: For a new flight plan, find 
the k closest matches (Pred.Model) 

5. Output: k ≥ 1 best-estim. (HMM: 
true, LR: synthetic) of the query FP, 
for prob.estim. or further refinement 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 



DART 

Step 1: clustering semantically 
annotated trajectories 
 
• Input: Reference waypoints, 

matched with flight plans 
• Each waypoint is enriched with 

semantics, i.e., local weather, 
aircraft type, etc. 

• Use semantic-aware similarity 
metric, not just spatio-temporal 
track data 

• Output: Semantic-aware cluster 
medoids 

Input: flight plans (blue) and actual routes (red) 

Output: semantic-aware cluster medoids (colored) 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 



DART 

Step 2: building HMM for prediction 
 
• Input: Enriched flight plans + medoid for 

each cluster, query FP 
• Output: Max. likelihood estim. (emissions) of 

per-waypoint FP/RT deviations for query FP 
• HMM approach enabled us to quickly 

estimate the confidence intervals (HWCI) of 
the accuracy, s.t. further experiments. 
 

Route(q)j ≈ FlightPlan(q)j – MeanDeviation(k)j ± HWCI(k)j 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 

* See: H. Georgiou et al. (2018), Semantic-aware aircraft trajectory prediction using flight plans. (submitted)  
. 



DART 

Step 2: building Linear Regr. for prediction 
 
• Input: Enriched flight plans for each cluster, 

query FP 
• Output: LSE-optimized estim. of per-

waypoint value of predicted route 
• The previous HMM approach is functionally 

a special case of LR, which is more generic. 
 

Note(1): Decision Tree (DT) regressor can be used instead or LR as replacement (e.g. CART). 
Note(2): HWCI for LR error here is expected to be at most equal to the corresponding HWCI for HMM. 

Route(q)j ≈ FlightPlan(q)j * Bj + B0j ± HWCI(k)j’ (DT: per-node/leaf model) 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 



DART 

Stage-2, HMM approach: 
 
RT(n)-FP(n) statistics are used to 
build a probabilistic model (HMM 
emissions) for ref. point wp(n). 

* 

wp(n+1) 

wp(n) 

wp(n-1) 

dotted line: flight plan (FP), solid line: actual route (RT) 
arrows: FP/RT deviations, star: current pred. point (wp(n)) 
bold solid line: cluster medoid, pred. route for query FP 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 



DART 

* 

Stage-2, LR or DT  approach: 
 
RT(n) is estimated as synthetic 
from multiple/all FP(*) ref. points, 
used to build a LSE-minimum 
linear prediction model. 

wp(n+1) 

wp(n) 

wp(n-1) 
dotted line: flight plan (FP), solid line: actual route (RT) 
arrows: FP/RT deviations, star: current pred. point (wp(n)) 
bold solid line: cluster medoid, pred. route for query FP 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 



DART 
Overview: TP performance tests 



DART 
Non-linear Regressors (NN) 

LEMD2LEBL (CV.k=10): input=FP(3D)+AP → output=Lat/Lon/Alt (NN) 



DART 
Advanced pre-processing: Wiener filtering 

TP-C: Close-up view of a FP/RT data sample (single flight), Lat-only 



DART 
Advanced pre-processing: Wiener filtering 

TP-C: Wiener forward predictor for FP/RT (single flight), Lat-only 



DART 
Special predictive modeling: ETA (aviation) 

NN/MLP: ETA pred. errors on FP/RT dataset (top-20 of 217 stat.feat.) 



B ig  Da ta  Ana ly t i c s   

fo r  T ime -C r i t i ca l   

Mob i l i t y  Fo r e cas t i ng  



Objective Current Performance  Target Performance  

Computation of data 

synopses  
<95% compression 

>95% data compression without 

harming the quality of analytics results 

Real-time trajectory 

reconstruction 

Offline trajectory 

reconstruction 
Real-time computations 

Efficient large-scale 

mobility data analytics 
Gb size of datasets Tb size of datasets 

Real-time trajectories 

forecasting for ATM and 

maritime, resp.  

Short forecasting horizon, 

depending on current 

speed of airplane/vessel.  

Increase the accuracy in positional 

predictions by reducing the standard 

deviation of the positional error in 

prediction.  



1. Future Location Prediction (FLP):  
- Short-term (FLP-S): Online, based only on recent positions (time series), look-
ahead time is a few minutes at most. 
- Medium/Long-term (FLP-L): Online, based on recent positions and history 
(routes network), look-ahead time is up to entire trips (end-to-end). 

2. Trajectory Prediction (TP):  
- Long-term, Unconstrained (TP-U): “Only the starting point is specified” 

   Addressed via FLP-L (routes network). 
- Long-term, Destination-only (TP-D): “Staring and ending points are specified” 

   Addressed via FLP-L (routes network). 
- Long-term, Constraints-based (TP-C): “Several reference points are specified” 

   Offline/batch-only, exploiting complete & enriched flight plans. 
  



1. Distributed online FLP (FLP-S): Extension of the RMF algorithm to a 
distributed P-RMF* for short-term FLP (Petrou et.al. 2018) 

– Using surveillance data + predefined motion patterns 

– Improvement: Bypass the problems of original RMF on real data 

2. Distributed online Medium/Long-term (FLP-L)  
– Designed and at a good level of implementation 

3. Semantically-driven TP (TP-C): Novel hybrid clustering/LR-based 
method for TP (Georgiou et al. 2018)  

– Using enriched trajectories + prior constraints (e.g. flight plans) for use on TP-C tasks 

– Improvement: HMMs replaced by more efficient Linear Regressors 



FLS-S: Close-up view of extrapolation errors, horizontal-only 



FLP-S (a.k.a P-RMF*) architecture 



 

a) actual flight landing 

b) predicted future point (H=8) 

Flight Aware data (London): Id= 10, Sampling rate= 8sec, Horizon= 8 



Patterns Usage 

 



FLP-S: Horizontal & vertical error for complete flights with sampling rate 4 seconds 

FLP-S: LEMD/LEBL (IFS radar) 



FLP-S: Performance metrics for 18·106 points, 4000 points/sec processing in 8 secs 

# batch (16.000 points/batch) 

FLP-S: Task Execution Time Based on Batch Interval 



FLP-L: Routes discovery & network construction 



FLP-L  architecture 



FLP-L: Red left = knn-based “start”, Red right = knn-based “end”, orange line = matched path 



FLP-L: Performance metrics for 25·106 points, 6000 points/sec processing in 10 secs 

FLP-L: Task Execution Time Based on Batch Interval 



Cross-streaming: IFS/FLW deviations example (blue=orig./red=filtered) 



Cross-streaming: IFS/FLW statistical filter design (“strict”, p=0.90) 



Cross-streaming: IFS/FLW statistical filter design (“medium”, p=0.95) 



Cross-streaming: IFS/FLW statistical filter design (“relaxed”, p=0.99) 





Track & Know  
 

• Funded by the European Union’s Horizon 2020 

• Consortium of 14 partners from 9 different 

countries  

• Research, develop and exploit a new software 

framework to increase efficiency of Big Data 

• Applications in transport, mobility, motor insurance 

and health sectors 

• Develop user-friendly toolboxes that will be readily 

applicable 

• Validation in real-world pilots 



Big Data KPIs 

Performance KPI  Target Value  

Time-to-realization reduction  40% - 60%  

Query time reduction  >15%  

Data Load balancing time reduction for distributed query execution  >5%  

Data Load balancing volume reduction for distributed query execution  >25%  

Unstructured Data processing time reduction  >10%  

Structured Data processing throughput improvement  >20%  

Big Mobility Data pattern detection improvement  >30%  

Big Mobility Data forecasting accuracy improvement  >40%  

Complex Event Recognition processing improvement  >8%  

Visualisation processing time reduction for interactive Mobility Data  >15%  

Visualisation processing time reduction for aggregated Mobility Data  >10%  



UPRC – WP4 planned work (M10+) 

T4.1: “Analytics for mobility patterns detection for forecasting” 

• Analysis methods & tools over Big Mobility Data 

o Cluster analysis 

o Motion pattern detection 

o Exploit enriched & integrated data sources 

 

• Short/Long forecasting 

o of routes, flows, concentration nodes 

o contextual properties, outliers detection 

two types of clustering algorithms 

pattern-based short-term FLP, 

routes network for long-term FLP 

clustering & routes networks 

will exploit data enrichments 

routes networks, hot-spot analysis 

special predictors (turns, node-ETA),  

“enriched” trajectory synopses 

 Also, from toy scenarios: driving profiles, fuel consumption, etc 



Plot: Histogram of dt intervals in position reporting 
 

 Distribution (pdf) is Exponential as expected, but with heavy tail 

 Corresponding “events” model is Poisson / GEV (non-Gaussian) 

 BDA models have to compensate (pre-processing, resampling)  

Reporting period (dt) 

Outliers / critical points 

 are expected here 

UPRC – WP4 status update (M11) 



UPRC – WP4 status update (M11) 

Multiple peaks in 

the dT distribution 

(right tail trimmed) 

 BAD 



UPRC – WP4 status update (M11) 

Sub-trajectories vs. #points Pair-wise point dS 

Sub-trajectories vs. speed Sub-trajectories vs. accel. Pair-wise turn rates 

Pair-wise dT range 

( >0.1 and <= dTgap) Widely-distributed 

lengths (#points) 

 BAD Zero-packed dT 

distrib. (#points>100) 

 GOOD 

Bimodal dS 

distrib. (#points>100) 

 BAD 

Unimodal speed 

distrib. (#points>100) 

 ACCEPTABLE 

Zero-packed accel. 

distrib. (#points>100) 

 GOOD 

χ2-like turn rate 

distrib. (#points>100) 

 GOOD 



• EU- H2020 ICT/ BigDataStack: 

High-performance Data-centric Stack for Big Data Applications and Operations [www.bigdatastack.eu/], 2018-20 

• EU-H2020 ICT/Track and Know: 

     Big Data for Mobility Tracking Knowledge Extraction in Urban Areas 

     [trackandknowproject.eu/], 2018-20 

• EU- H2020 ICT/ datAcron:  

Big Data Analytics for Time Critical Mobility Forecasting [datacron-project.eu/], 2016-18  

• EU- H2020 SESAR/ DART: 

Data-driven Aircraft Trajectory Prediction Research [dart-research.eu], 2016-18 

• GR/ RoadRunner:  

Scalable and Efficient Analytics for Big Data [platforms.gr/roadrunner/], 2014-15 

• EU- FP7 Marie Curie/ SEEK: 

Semantic Enrichment of Trajectory Knowledge Discovery [www.seek-project.eu], 2012-15 

• EU- FP7 ICT/ DATASIM: 

Data Science for Simulating the Era of Electric Vehicles [www.uhasselt.be/datasim], 2011-14 

• EU- FP7 Marie Curie/ CloudIX:  

Cloud-based Indexing and Query Processing [research.idi.ntnu.no/cloudix/], 2011-13 CloudIX 



Big (spatial-temporal) data management & query processing 

• P. Tampakis et al. (2018) Distributed trajectory join processing using 

MapReduce. Submitted. 

• C. Doulkeridis et al. (2017) Parallel and distributed processing of 

spatial preference queries using keywords. Proceedings of EDBT. 

• F. Gryllakis et al. (2017) Searching for spatio-temporal-keyword 

patterns in semantic trajectories. Proceedings of IDA. 

• M. Saouk et al. (2016) Efficient processing of top-k joins in 

MapReduce. Proceedings of Big Data. 

• S. Sideridis et al. (2016) On querying and mining semantic-aware 

mobility timelines. Int. J. Data Science and Analytics, 2(1). 

• D. Pertesis & C. Doulkeridis (2015) Efficient skyline query processing in 

SpatialHadoop. Information Systems, 54(C). 

• C. Doulkeridis & K. Nørvåg (2014) A survey of large-scale analytical 

query processing in MapReduce. VLDB Journal, 23(3). 

Big (spatial-temporal) data analytics & mining 

• H. Georgiou et al. (2018) Predicting the next steps of moving 

objects: a survey. Under preparation.  

• H. Georgiou et al. (2018) Semantic-aware aircraft trajectory 

prediction using flight plans. Submitted.  

• G.A. Vouros et al. (2018) Big data analytics for time critical 

mobility forecasting: recent progress and research challenges. 

Proceedings of EDBT. 

• N. Pelekis et al. (2017) On temporal-constrained sub-trajectory 

cluster analysis. Data Mining and Knowledge Discovery, 31(5). 

• P. Nikitopoulos et al. (2016) BigCAB: Distributed hot spot 

analysis over big spatio-temporal data using Apache Spark (GIS 

Cup). Proceedings of ACM SIGSPATIAL - GIS.  

• N. Pelekis et al. (2016) Simulating our LifeSteps by example. 

ACM Transactions on Spatial Algorithms and Systems, 2(3).  



“...Our goal is to address the challenging 

problems related to the wealth data, by 

advancing research and producing solutions to 

real world problems related to efficient and 

scalable management of Big Data, including 

gathering and cleansing data, storing and 

indexing data, analyzing and mining data.” 

Data Science Lab @ Univ. of Piraeus 
 

URL: http://datastories.org 

Facebook: @DataStories 

Twitter: @UnipiDataSciLab 



“Assurance”: R&D in fMRI (post-doc, ΕΚΠΑ, 2013-2015) 
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“Assurance”: R&D in fMRI (post-doc, ΕΚΠΑ, 2013-2015) 



“Assurance”: R&D in fMRI (post-doc, ΕΚΠΑ, 2013-2015) 

* See: Y. Kopsinis, H. Georgiou, S. Theodoridis (2014). “fMRI Unmixing Via Properly Adjusted Dictionary Learning”, 

            22nd European Signal Processing Conference (EUSIPCO 2014), 1-5 Sept 2014 @ Lisbon, Portugal. 
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* See: Y. Kopsinis, H. Georgiou, S. Theodoridis (2014). “fMRI Unmixing Via Properly Adjusted Dictionary Learning”, 

            22nd European Signal Processing Conference (EUSIPCO 2014), 1-5 Sept 2014 @ Lisbon, Portugal. 



“Assurance”: R&D in fMRI (post-doc, ΕΚΠΑ, 2013-2015) 

* See: Y. Kopsinis, H. Georgiou, S. Theodoridis (2014). “fMRI Unmixing Via Properly Adjusted Dictionary Learning”, 

            22nd European Signal Processing Conference (EUSIPCO 2014), 1-5 Sept 2014 @ Lisbon, Portugal. 
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“Assurance”: R&D in fMRI (post-doc, ΕΚΠΑ, 2013-2015) 

* See: H. Georgiou (2017). “Intrinsic dimension estimation of the fMRI space via sparsity-promoting matrix 

     factorization”, 21st Panhelenic Conference in Informatics (PCI 2017), 28-30 Sept 2017 @ Larisa, Greece (ACM). 



“Assurance”: R&D in fMRI (post-doc, ΕΚΠΑ, 2013-2015) 



Questions 
Χάρης Γεωργίου (MSc,PhD) 

Data Science Lab @ Πανεπ. Πειραιά 

Email: harris@xgeorgio.info 



DART 
Non-linear Regressors (experiments) 



DART 
Non-linear Regressors (NN) 

LEMD2LEBL / cluster 1 / wp8 (tst=15%): input=FP(3D)+AP → output=Lat (NN) 



DART 
Non-linear Regressors (NN) 

LEMD2LEBL / cluster 1 / wp10 (tst=15%): input=FP(3D)+AP → output=Lat (NN) 



DART 

• Stage-2: HMMs vs. Linear Regressors: 
 LR improves accuracy (9-34%) vs. HMM across all configurations 
 clustering/LR better (up to 16,5%) than clustering/HMM 
 

• Input dimension: FP(1D) vs. full FP(1D) vs. full FP(3D) vs. full FP(3D)+AP: 
 LR/FP(3D) provides x3-x4 improvement of accuracy than LR/FP(1D) over HMM 
 LR/FP(4D), i.e. LR/FP(3D) + AP, improves accuracy only marginally (1-3%) 
 

• Non-clustered vs. Clustered dataset (HMM, LR, CART): 
 Clustering improves accuracy across all models & dimensionality (14-26,5%) 
 Misaligned samples in clustering produces instability in stage-2 pred. models 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 

* See: H. Georgiou et al. (2018), Semantic-aware aircraft trajectory prediction using flight plans. (submitted)  
. 



DART 

• LR (primary choice) vs. CART (as alternative): 
 LR:     (+) more resilient to “noise” in training, (-) less robust in generalization 
 CART: (-) less resilient to “noise” in training, (+) more robust in generalization 
 Complementary behavior, hints for combining them per-dimension 

 
• Per-dimension comments, “active window” (LR), dataset properties: 

 Lat. is inherently much more difficult to predict, possibly due to E/W orientation 
 Some LR use only “local neighbor” of ref. points (small coefficients elsewhere) 

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 

* See: H. Georgiou et al. (2018), Semantic-aware aircraft trajectory prediction using flight plans. (submitted)  
. 



DART 

• Advanced non-linear regressors, generalization (vs. LR, CART): 
 More resilient to “noise” in training, better generalization & stability 
 Clustering (stage-1) becomes less important with more robust regressors 
 NN: seems the best tradeoff between complexity vs. performance 

 
• NN/MLP full experimental assessment: 

 Lat. is still much more difficult to predict, possibly due to E/W orientation 
 Multi-linear regression (3D output) seems much more difficult to achieve  

Hybrid Clustering-Pred.Model (HMM, LR, DT, NN) 

* See: H. Georgiou et al. (2018), Semantic-aware aircraft trajectory prediction using flight plans. (submitted)  
. 



DART WP2-Single Trajectory Prediction 
Issues, risks & contingencies: 

 FP/RP “enriched” ref. points provide only a coarse trajectory as time series 

 Many large deviations between “intended” (FP) and actual route (RT) 

 Clustering is always beneficial in linear (HMM, LR) and multi-linear (CART) 

 ...but becomes less important when robust non-linear regressors are used 

 Error analysis (pred) shows few large peaks (“heavy” right tail in pdf) 

 Dimensionality analysis: full 3-D FP input can be reduced (d=5...13 << 48) 
 

 Full-resolution (raw) IFS flight route may be combined with FP “constraints” 

 Complexity vs. Performance tradeoff in regressors is a design-time decision 

* See: H. Georgiou et al. (2018), Semantic-aware aircraft trajectory prediction using flight plans. (submitted)  
. 



Cross-streaming: IFS/FLW outliers distribution vs. p-thresholds 
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