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Abstract. In this paper, we present a Big data framework for the pre-
diction of streaming trajectory data by exploiting mined patterns of tra-
jectories, allowing accurate long-term predictions with low latency. In
particular, to meet this goal we follow a two-step methodology. First,
we efficiently identify the hidden mobility patterns in an offline manner.
Subsequently, the trajectory prediction algorithm exploits these patterns
in order to prolong the temporal horizon of useful predictions. The ex-
perimental study is based on real-world aviation and maritime datasets.

Keywords: Trajectory prediction · trajectory clustering · mobility pat-
terns · Big data.

1 Introduction

Huge amounts of tracking data are being generated on a daily basis by GPS-
enabled devices which are stored for analytics purposes. These constitute a rich
source for inferring mobility patterns and characteristics, which, in turn, can
be valuable to a wide spectrum of novel applications and services, from mobile
social networking to aviation traffic monitoring. During the last years, such data
have attracted the interest of data scientists, both in industry and academia,
and are used to extract knowledge and useful features on what, how and for how
long the moving entities are conducting individual activities related to specific
circumstances. One of the most challenging tasks is to exploit these data by
means of identifying historical mobility patterns, which, in turn, can gauge the
procedure of discovering what the moving entities might do in the future. As a
consequence, predictive analytics over mobility data have become increasingly
important and are ubiquitous in many application fields [2, 29, 40].

The problem of predictive analytics over mobility data finds two broad cate-
gories of application scenarios. The first scenario involves cases where the moving
entities are traced in real-time to produce analytics and compute short-term pre-
dictions, which are time-critical and need immediate response. The prediction
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includes either location- or trajectory-related tasks. Short-term location and tra-
jectory prediction facilitates the efficient planning, management, and control pro-
cedures while assessing traffic conditions in the road, sea and air transportation
field. The latter can be extremely important in domains where safety, credibility
and cost are critical and a decision should be made by considering adversarial
to the environment conditions to act immediately. The second scenario involves
cases where long-term predictions are important to identify cases which exceed
regular mobility patterns, detect outliers and determine a position or a sequence
of positions at a given time interval in the future. In this case, although response
time is not a critical factor, it is still crucial in order to identify correlations be-
tween historical mobility patterns and patterns which are expected to appear.
Long-term location and trajectory prediction can assist to achieve cost efficiency
or, when contextual information is provided (e.g., weather conditions), it can en-
sure public safety in different transportation modes (land, sea, air).

As the maritime and the Air Traffic Management (ATM) domains have ma-
jor impact to the global economy, a constant need is to advance the capability of
systems to improve safety and effectiveness of critical operations involving a large
number of moving entities in large geographical areas [21]. Towards this goal,
the exploitation of heterogeneous data sources, which offer vast quantities of
archival and high-rate streaming data, is crucial for increasing the computations
accuracy when analysing and predicting future states of moving entities. How-
ever, operational systems in these domains for predicting trajectories are still
limited mostly to a short-term look-ahead time frame, while facing increased
uncertainty and lack of accuracy.

Motivated by these challenges, we present a Big data solution for online
trajectory prediction by exploiting mined patterns of trajectories from historical
data sources. Our approach offers predictions such as ‘estimated flight of an
aircraft over the next 10 minutes’ or ‘predicted route of a vessel in the next hour’,
based on their current movement and historical motion patterns in the area.
The proposed framework incorporates several innovative modules, operating in
streaming mode over surveillance data, to deliver accurate long-term predictions
with low latency requirements. Incoming streams of moving objects’ positions
are cleansed, compressed, integrated and linked with archival and contextual
data by means of link discovery methods.

This paper includes three main contributions: (a) we devise a big-data method-
ology/algorithm that solves the Future Location Prediction (FLP) problem in a
effective and highly scalable way; (b) the design and implementation of our algo-
rithm on top of state-of-the-art Big data technologies (namely Spark and Kafka);
(c) extensive experimental study in large real datasets from the maritime and
aviation domains. To the best of our knowledge, in contrast to related state-of-
the-art systems [10, 8] and research approaches [7], our approach is unique as a
Big data framework capable of providing long-term trajectory predictions in an
online fashion.

This paper is organized as follows. Section 2 presents the related work from
the field of trajectory prediction and long-term future location prediction, es-
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pecially from the maritime and aviation domains. Next, Section 3 describes the
system overview and architecture of the proposed approach, as well as how this
fits into the Big data scope. Section 4 presents the mobility pattern discovery
module, in the form of a novel and scalable subtrajectory clustering Big Data
solution, which is the first stage of this approach. Predictive models, which is the
second stage, are described in Section 4.2. The experimental study in Section 5
includes datasets from both the maritime and the aviation domain. Finally, the
conclusions and future aspects of this work are described briefly in Section 6.

2 Background

The trajectory of a moving object is defined as:< (p0, t0), (p1, t1), ..., (pi, ti), ... >,
where pi is the location of the object in d -dimensional space (typically, d=2 or 3,
for a movement in plane or volume, respectively) and ti is the time this recording
was made, with ti < ti+1 (i.e., the sequence is chronologically ordered).

Having this at hand, two main prediction-related problems can be stated for
moving objects: Future Location Prediction (FLP) and Trajectory Prediction
(TP). In these definitions we adopt the following terminology: symbols p and t
refer to recorded or given locations and timestamps, respectively, whereas sym-
bols p* and t* refer to (future) predicted locations and timestamps, respectively.

Problem definition 1 Future Location Prediction (FLP): Given (a) the in-
complete trajectory < (p0, t0), (p1, t1), ..., (pi−1, ti−1) > of a moving object o,
consisting of its time-stamped locations recorded at past i time instances, and
(b) an integer value j ≥ 1, predict < (p∗i , ti), ..., (p

∗
i+j−1, ti+j−1) >, i.e., the

objects’s anticipated locations at the following j time instances.

Problem definition 2 Trajectory Prediction (TP): Given (a) the incomplete
trajectory < (p0, t0), (p1, t1), ..., (pi−1, ti−1) > of a moving object o consisting of
its time-stamped locations recorded at past i time instances and (b) a target
region R, predict < (p∗i , ti), ..., (p

∗, t∗) >, where p∗ ∈ R, i.e., the object’s antici-
pated locations until it matches a point p∗ in R (note: p∗ may be never reached
exactly).

Using these two baseline definitions for the FLP and TP tasks, a wide variety
of algorithms can be employed to predict either sequences of future points (FLP)
or the evolution of entire trajectories (TP). In the context of this work, the
interest is focused specifically in TP or, complementary, to long-term FLP, i.e.,
with sufficiently large look-ahead time frames.

A typical example of a FLP method is presented in [36], where the authors
propose TPR*-tree (index-based), which derives from TPR-tree, and exploits the
characteristics of dynamic moving objects in order to retrieve only those which
will meet specific spatial criteria within the given time interval, i.e., query win-
dow, in the future. Every moving object is represented by a Minimum Bounding
Rectangle (MBR) along with a Velocity Bounding Rectangle (VBR). The pro-
posed index integrates novel insertion and deletion algorithms to enhance per-
formance and supports predictive spatio-temporal queries by specifying a query
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region qr and a future time interval qt and retrieving the set of objects that will
intersect qr at any timestamp t ∈ qt.

The previous method can be considered as a FLP-based approach, mostly
in the context of the long-term prediction. There is also a number of TP-based
approaches that address the prediction task in a similar way. In theory, every
FLP method can be transformed to a full TP model, given a specific granularity
upon which the same method is applied iteratively. The main difference with
‘pure’ TP methods is that in this case the prediction errors are accumulated with
each step (e.g. via multi-step Linear Regression) along the prediction track, thus
making the predicted points increasingly error-prone. In contrast, TP methods
forecast the complete trajectory as a whole, thus making each predicted point
equally error-prone. Regarding en route climb TP, one of the major aspects of
decision support tools for ATM, Coppenbarger [8] discusses the exploitation of
real-time aircraft data, such as aircraft state, aircraft performance, pilot intent
and atmospheric data for improving ground-based TP. The problem of climb
TP is also discussed by Thipphavong, Schultz, et al. [37], as it constitutes a
very important challenge in ATM. In this work, an algorithm that dynamically
adjusts modeled aircraft weights is developed, exploiting the observed track data
to improve the accuracy of TP for climbing flights.

In the area of stochastic approaches, Ayhan and Samet [4] introduce a
novel stochastic approach to aircraft trajectory prediction problem, which ex-
ploits aircraft trajectories, based on Hidden Markov Models (HMM), modeled in
space and time by using a set of spatio-temporal data 4-D cubes (latitude, lon-
gitude, altitude, time) enriched by weather parameters. Gong and McNally [15]
proposed a methodology for automated trajectory prediction analysis, specifi-
cally for splitting the process in separated stages according to the flight phases.
The purpose is to identify flights, as described by actual radar tracks, which
show unpredictable modifications of their aircraft intent and can be considered
outliers. In another work by Ayhan and Samet [5], the authors investigate the
applicability of the HMM for TP on only one phase of a flight, specifically the
climb after takeoff. Moreover, they address the problem of incorporating weather
conditions in their model, as they represent a major factor of uncertainty in all
TP applications.

Regression and clustering are also two main areas of interest when apply-
ing machine learning methods in TP. Neural Networks (NN) have been proposed
in various works as the core regression model for the task of TP. Le Fablec, Yann
and Alliot [12] have introduced NNs for the specific problem of predicting an
aircraft trajectory in the vertical plane, i.e., its altitude profile with the time.
Cheng, Taoya, et.al. [6] employ a data mining statistical approach on the radar
tracks of aircrafts to infer the future air traffic flows using Neural Networks (NN)
and exploiting data grouped in seven ‘weekday’ categories for predicting the Es-
timated Time of Arrival (ETA) at designated fixes and airports as output. Leege,
Paassen and Mulder [21] also address the specific TP task of predicting arrival
routes and times via Generalized Linear Models (GLM), merging together air
traffic following fixed arrival routes, meteorological data and two aircraft types.



Online long-term trajectory prediction 5

In a very recent work of TP in aviation, Georgiou et al. [14] introduce flight
plans, localized weather and aircraft properties as trajectory annotations that
enable modelling in a space higher than the typical 4-D spatio-temporal. A multi-
stage hybrid approach is employed for a new variation of the core TP task, the so
called Future Semantic Trajectory Prediction (FSTP), including clustering the
enriched trajectory data using a semantic-aware similarity function as distance
metric. Subsequently, a separate predictive model is trained for each cluster,
using a non-uniform graph-based grid that is formed by the waypoints of each
flight plan. In practice, flight plans constitute a constrained-based training of
each predictive model, one for each waypoint, independently. Various types of
predictive models are tested, including HMM, linear regressors, regression trees
and feed-forward NNs. The results show very narrow confidence intervals for the
per-waypoint TP errors in HMM, while the more efficient linear and non-linear
regressors exhibit 3-D spatial accuracy much lower than the current state-of-
the-art, up to a factor of five compared to ‘blind’ TP for complete flights, in the
order of 2-3 km compared to the actual flight routes.

Concerning mobility pattern discovery, the aim is to identify several types
of collective behavior patterns among moving objects like the so-called flock
pattern [19, 38] and the notion of moving clusters [18]. A number of research
efforts that emerged from the above ideas are the approaches of convoys [17, 27],
platoons [22], swarms [23], gathering pattern [39] and traveling companion [35].
However, all of the aforementioned approaches are centralized and cannot scale
to massive datasets. Towards this, the problem of convoy discovery in a dis-
tributed environment by employing the MapReduce programming model was
studied both in [26]. An approach that defines a new generalized mobility pat-
tern which models various co-movement patterns in a unified way and is deployed
on a modern distributed platform (i.e., Apache Spark) to tackle the scalability
issue is presented in [13].

Another line of research, tries to discover groups of either entire or por-
tions of trajectories considering their routes. A typical strategy is to transform
trajectories to a multi-dimensional space and then apply well-known clustering
algorithms such as OPTICS [3] and DBSCAN [11]. Another approach is to define
an appropriate similarity function and embed it to an extensible clustering algo-
rithm [25]. Nevertheless, trajectory clustering is an “expensive” operation and
centralized solutions cannot scale to massive datasets. Furthermore, [32] pro-
poses a MapReduce approach that aims to identify frequent movement patterns
from the trajectories of moving objects. In [16] the authors tackle the problem
of parallel trajectory clustering by utilizing the MapReduce programming model
and Hadoop. They adopt an iterative approach similar to k-Means in order to
identify a user-defined number of clusters, which leads to a large number of
MapReduce jobs.

However, discovering clusters of complete trajectories can overlook significant
patterns that might exist only for portions of their lifespan. To deal with this, the
authors of [20] propose TraClus, a partition-and-group framework for clustering
2-D moving objects which segments the trajectories based on their geometric
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features, and then clusters them by ignoring the temporal dimension. A more
recent approach to the problem of subtrajectory clustering, is S2T-Clustering
[31], where the authors take into account the temporal dimension, and the seg-
mentation of a trajectory takes place whenever the density of its spatiotemporal
‘neighborhood’ changes significantly. The segmentation phase is followed by a
sampling phase, where the most representative subtrajectories are selected and
finally the clusters are built “around” these representatives. A similar approach
is adopted in [1], where the authors aim at identifying common portions be-
tween trajectories,with respect to some constraints and/or objectives, by taking
into account the “neighborhood” of each trajectory. These common subtrajec-
tories are then clustered and each cluster is represented by a pathlet, which
is a point sequence that is not necessarily a subsequence of an actual trajec-
tory. A different approach is presented in QuT-Clustering [30] and [33], where
the goal is, given a a temporal period of interest W , to efficiently retrieve al-
ready clustered subtrajectories, that temporally intersect W . To achieve this, a
hierarchical structure, called ReTraTree (Representative Trajectory Tree) that
effectively indexes a dataset for subtrajectory clustering purposes, is built and
utilized.

The approach presented in this paper combines several aspects and ideas from
the methods cited above, in order to develop a highly adaptive, long-term, Big
data framework for FLP which is experimentally evaluated with datasets from
both the maritime and the aviation domain. More specifically, this two-stage
approach includes: (a) mobility pattern discovery from the historical movement
of the moving objects; and (b) employ optimal estimations of FLP in the sense
of maximum likelihood, as they are dictated by the identified patterns. Further-
more, some promising experimental results are presented for real datasets from
both domains, as well as performance indicators for deployment in a Big data
platform.

3 Overview of the Approach

In this section we describe the architecture of our proposed framework, which
follows a typical lambda architecture [24] that combine streaming and batch
layers to implement an end-to-end big data prediction solution. The proposed
framework, as depicted in Figure 1, consists of two main modules, namely, Pat-
tern Extraction and Future Location Prediction(FLP). All modules are build on
top of big data engines, so that they can be scalable and offer low latency. Kafka
is used as an integration network for online toolboxes and a shared storage (i.e.
Apache Hadoop HDFS) is used in order to update existing patterns or add new
ones. Subsequently, the FLP module can “read” these patterns and execute the
prediction pipeline.

At first, each moving object sends its location via traditional network proto-
cols and then a Kafka producer collects all positions and pushes them to a Kafka
topic. The Pattern Extraction module identifies “typical routes”, in an offline
manner. Finally, these “typical routes” are broadcast among all slaves and the
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FLP module combines them with the live incoming stream of data in order to
predict the future location for each object.

Fig. 1. Architecture of the proposed framework

4 Methodology

4.1 Offline step: Mobility Pattern Extraction based on
Sub-Trajectory Clustering

The goal of this module is to identify frequent patterns of movement that will
assist the FLP module to increase the accuracy of the predictions. The research
so far has focused mainly in methods that aim to identify specific collective be-
havior patterns among moving objects, such as flocks,convoys and swarms [41],
or methods that try o identify patterns that are valid for the entire lifespan
of the moving objects [25, 9]. However, discovering clusters of entire trajecto-
ries can overlook significant patterns that might exist only for small portions
of their lifespan. Furthermore, most of the approaches either operate at spe-
cific predefined temporal “snapshots” of the dataset and ignore the movement
between these “snapshots” and/or ignore the temporal dimension and perform
spatial-only clustering and/or assume that the length (number of samples) of
the trajectories and the sampling rate is fixed, which is unrealistic. Another
thing that should be taken into account when designing a prediction-oriented
trajectory clustering algorithm, is that the resulting clusters should have a small
extent in order for the predictions to be more accurate. Obviously, this, rules
out a large number of approaches that perform density-based clustering which
might lead to spatially extended clusters through expansion.
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For the above reasons, the desired specifications that such a trajectory clus-
tering algorithm should hold, in order to be able to predict the movement of
future trajectories, are the following:

– Discovering of clusters of subtrajectories, instead of whole trajectories.
– Spatio-temporal clustering, instead of spatial only.
– Support of trajectories with variable sampling rate, length and with temporal

displacement.
– Distance-based clustering.

There have been some approaches to deal with the problem of subtrajectory
clustering in a centralized way [20, 31, 1], however, all the above subtrajectory
clustering approaches are centralized and do not scale with the size of today’s
trajectory data, thus calling for parallel and distributed algorithms. For this
reason, we utilize the work presented in [34], coined DSC, which introduces an
efficient and highly scalable approach to deal with the problem of Distributed
Subtrajectory Clustering, by means of MapReduce. More specifically, the authors
of [34] split the original problem to three sub-problems, namely Subtrajectory
Join, Trajectory Segmentation and Clustering and Outlier Detection, and deal
with each one in a distributed fashion by utilizing the MapReduce programming
model.

To elaborate more, the Subtrajectory Join step aims at retrieving for each tra-
jectory r ∈ D, all the moving objects, with their respective portion of movement,
that moved close enough in space and time with r, for at least some time dura-
tion. Subsequently, the Trajectory Segmentation step takes as input the result
of the Subtrajectory Join step, which is actually a trajectory and its neighboring
trajectories and targets at segmenting each trajectory r ∈ D into a set of sub-
trajectories in a neighbourhood-aware fashion, meaning that a trajectory will be
segmented whenever its neighbourhood changes significantly. Finally, the third
step takes as input the output of the first two steps and the goal is to create
clusters of similar subtrajectories and at the same time identify subtrajectories
that are significantly dissimilar from the others (outliers).

For more details about the algorithms involved in DSC and an extensive
experimental study, please refer to [34].

4.2 Online step: On Long-term Future Location Prediction

In this section, we describe how the FLP module takes advantage of an individ-
uals typical movement (medoids from now on), based on the observation that
moving objects often follow the same route patterns. This observation fits ex-
actly in the maritime and aviation domain where vessels or airplanes have very
strict routes between ports and airports, either implied due to route optimization
(e.g. ships fuel consumption) or explicitly required as official regulation (flight
plans).The Future Location Prediction (FLP) module aims to make an accurate
estimation of the next movement of a moving object within a specific look-ahead
time frame.
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Most approaches do not take advantage of any other historic data available,
either from the object itself or other similar objects moving within the same
area and context, making it susceptible to errors associated to noise, artifacts or
outliers in the input. This results in inaccurate predictions and only with a short
horizon (seconds or few minutes). A very different approach for the FLP problem
is making the associated predictive models less adaptive but more reliable, by
introducing specific memory based on historic data of an entire fleet of objects
relevant to the context at hand. On the other hand, this requires a combination
of historical and streaming data which is not a trivial task. A big challenge of
our proposed framework is how to handle thousands of records efficiently in the
context of online streaming data, join each object with the appropriate medoids
and finally do all the necessary model calculations to produce predictions for the
future locations of an object. In practice, several such medoids are pre-computed
and stored in an efficient way (partitioned by object identifier), so that they can
be retrieved on demand or even kept in-memory for several thousands of objects,
making long-term FLP feasible in a large scale. This task is addressed by employ-
ing a Big data engine that is designed to conduct fast joins between streaming
data and historical data. Spark module (SQL or Streaming) can efficient join
historical and streaming data. Either with map-side-join (a.k.a broadcast join)
or using Dataset (Spark structure) metadata to achieve extra optimizations. For
example if the medoids can be sent to all workers (broadcast) at the initial phase,
it is recommended to replicate medoids (create a local variable) in each worker
and for each object in Map-Reduce phase we select its medoids to perform pre-
diction. On the other hand, if the medoids’ size cannot stored in each workers’
memory, we partition the medoids by objects’ identidier in order to have quick
access for a specific object and create spark distributed structures that can be
easily joined with Streaming data via Sparks SQL API.

Medoid matching: The first step tries to match the objects recent history
with the medoids. More specifically, for all the medoids, we find the closest
to the objects current trajectory. Algorithm 1 uses a spatiotemporal similarity
function in order to find the best match. Prediction: The algorithm has already
identified the last point from the best-matched, according to the previous stage.
Then, it follows the medoids points one by one until it reaches the prediction
horizon.

The FLP-L approach described in brief above is inherently intuitive and self-
explanatory. It relies on past routes of the same or similar objects in order to
forecast how a specific object will move while it is already residing on a specific
frequently-traversed route. The weighted similarity function was proposed in [28]
and in our algorithm weights ratio is estimated by mean speed.

Algorithm 1 describes the prediction step in a more technical . Actually,
these steps is the Spark’s map function after collecting streaming data in a
certain (user-defined time window).

The above algorithm could be implemented in Spark Map-Reduce API as
follows:

1. Receiving and parsing messages from input Kafka topic (map)
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Algorithm 1: FLP-L Algorithm

Input : current state (object’s recent history), object’s network, horizon,
distance threshold

Output: prediction path
min dist ← Double.MaxValue;
best match ← null;
foreach trajectory ∈ medoids do

traj medoid distance ← SpatioTemporal Distance(current state, trajectory);
if traj medoid distance <min dist AND traj medoid distance
<distance threshold then

best match ← trajectory;
min dist ← traj medoid distance;

end

end
if best match is not null then

while prediction path.getLast.getTimestamp <horizon AND
best match.hasNext do

prediction path.add(best match.next()) end
end
return prediction path;

Procedure SpatioTemporal Distance

Input: trajectory1, trajectory2
Output: distance
distance ← 0;
foreach point ∈ trajectory1 do

temp point ← closest point(point, trajectory2);
distance ← distance + sqrt(w1 ·(point.x− temp point.x)2

+ w1 ·(point.y − temp point.y)2 + w2 · (point.t− temp point.t)2);

return distance
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2. Reduce by object identifier over a window period
3. Join objects streaming data with the proper medoids.
4. Map partition (process each object for the current window) in order to per-

form prediction.

Step 3 is required only for the Dataset Join, otherwise (broadcast join) step 3 is
performed inside step 4. Figure 2 illustrates an example of the FLP-L approach
over a flight between Madrid and Barcelona, where the red points are the actual
data and the blue points are the predictions.

Fig. 2. Madrid - Barcelona flight example of the FLP-L approach. Red points/locations
are real data and blue points are the predictions.

5 Experimental Evaluation

5.1 Experimental Setup

In this section, we present the results of our experimental study. Our cluster
consists of 10 nodes (1 master, 9 workers) with 5 executor cores per worker
and 4GB memory per worker. Input streams are provided by a Kafka topic
and FLP-L is implemented on top of Spark SQL Streaming engine and Apache
Yarn used as a resource manager. Spark SQL streaming tasks are processed
using a micro-batch processing engine, which processes data streams as a series
of small batch jobs thereby achieving low latency and exactly-once guarantees.
Spark-Kafka integration is provided by Spark, but Spark tuning depends on
parallelism, namely data partitioning and park Streaming integration for Kafka
in our architecture provides simple parallelism and 1:1 correspondence between
Kafka partitions and Spark partitions. his means that if we want the higher
performance, we have to configure Spark to create the same partitions as Kafka
and Kafka to have as many partitions as possible. For example, if input Kafka
topic has 60 partitions, then the cluster must have at least 60 cores for the query
to make progress and achieve the best performance. In our experiments we used
one Kafka topic for each domain (aviation, maritime) with 60 partitions.

We conducted experiments against real datasets (IFS messages and AIS mes-
sages). Table 1 summarizes some basic statistics about the input dataset.



12 P. Petrou et al.

Table 1. Dataset Description

Aviation Maritime

Number of Point 455000 16000000

Number of objects 680 flights 5055 MMSI

Spatial Coverage
Spain (Madrid -
Barcelona flights)

Brest Area

Time span April 2016 (one week) 6 months

5.2 Results

Based on the optimal Spark/Kafka configuration described in Figure 3, the to-
tal delay originates almost entirely from the processing time, which asymptoti-
cally stabilizes at around 5 seconds. This essentially translates to 60,000 Kafka
messages (points) per 10 second or 6,000 points/second, which corresponds to
8-minute look-ahead window. In other words, with an average sampling rate of 5
seconds for each moving object, this system configuration of the FLP module can
accommodate up to 30,000 moving objects with 5-second update and 8-minute
look-ahead predictions. It is also important to notice that scheduling time in
figure 3, which is related with Spark-Kafka integration. Scheduling time with
three workers overcome processing time because there are not enough resources
(cores) in the Spark cluster in order to process input messages and Kafka input
partitions. On the other hand, with six workers and above scheduler has enough
resources to assign the planned tasks. This behaviour occurs because there are
enough resources (cores) for executing Spark Tasks. On the other hand, with
three workers there are not enough resources for the input messages for schedul-
ing and the algorithm breaks. As described above, in this option a FLP approach
is employed for exploiting the cluster medoids as guidelines for providing online
predictions, e.g. as the actual flight evolves in real time. The general clustering
method in this case is the same as described in section 4. We use up to 14 clus-
ters in order to perform future location prediction. The FLP module, uses sliding
windows of 2 minutes of past positions in order to optimally match the most re-
cent segment of the current trajectory to one of the available medoids, using a
custom spatio-temporal similarity function. Then, the best-matched medoid is
used as the maximum-likelihood trajectory evolution and the predicted positions
are taken along its path for a specific (user-defined) look-ahead step.

Figure 4 illustrates the histogram of the horizontal error, i.e., the distri-
bution of errors, for all the trajectories in the Aviation (Madrid/Barcelona)
and Maritime (Brest Area) dataset and with spatial-only comparison (point-
wise Euclidean distance). Specifically, they illustrate the boxplots of the per-
complete-trajectory mean error for multiple look-ahead steps (1, 2, 4, 8, 16, 32
minutes). Additionally, the notation of the boxplot provides hints of the under-
lying error distributions, i.e., means, medians, upper/lower quartiles, non-outlier
ranges, etc. These verify that the prediction errors are indeed in accordance with
the expected shape of the distribution, i.e., a typical Extreme Value (EV) with
medium/low skewness (Gaussian-like) towards the lower limit and an asymp-
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totically decreasing right tail, i.e., accumulate and expand exponentially as the
look-ahead span doubles.

Fig. 3. Performance metrics for 16 · 106 points, 6 · 103 points/second, batch interval 10
second, 9 workers and 60 partitions.

6 Conclusion

In this work, a novel approach was introduced for the long-term FLP problem
(FLP-L). Our approach is based on purely data-driven extraction of mobility
patterns, i.e. subtrajectory cluster medoids. This approach is generic enough to
be applicable to various domain, such as in the aviation and maritime domain. t
is important to emphasize that the proposed framework relies end-to-end in big
data technologies The experimental results included here are focused primarily
on the maritime domain, since the aviation is considered a more ‘constrained’
problem due to the fact that all flights are legally bounded to file and closely
follow specific flight plans, i.e., the ‘intended path’ is much more specific and
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Fig. 4. Mean error for multiple look-ahead steps (1, 2, 4, 8, 16, 32 minutes), with
custom spatio-temporal similarity function and with 90%-threshold outliers removed.

mandatory. Nevertheless, this framework is directly applicable and valid in the
aviation domain too, especially since the medoids discovery is based upon some
form of clustering to discover groups and common motion patterns, either with
or without considering flight plans as input in the predictive models. The ac-
curacy in both domains, as well as the performance results, prove that it is a
very efficient and scalable Big data solution for real-world applications, easily
adaptable to various other domains.
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