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Short Communication
Abstract—Updating basic running statistics often requires keeping track of cumulants as the data set grows or evolves through time.
Common approaches that are based on running cumulants are inefficient for intensive-processing or Big data contexts, since they
introduce running windows to the original data set, in order to avoid arithmetic overflows. This work formulates recursive estimators for
arithmetic mean and (sample) standard deviation of Normal distributions, which are of minimum storage complexity (one-step-back),
arithmetically robust for error resiliency and inherently parallelizable at the lowest possible level (arithmetic operators).
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1 INTRODUCTION

IN massive data sets usually found in streaming or Big
data tasks, it is often that updates to basic statistics such

as the arithmetic mean and (sample) standard deviation
need to be performed online, with minimum storage re-
quirements for previous history, minimum number of cal-
culations, robust arithmetic to avoid cumulative errors and
inherently parallelizable design.

The most common approaches, such as keeping track of
cumulants as the data set grows or evolves, are sensitive
to arithmetic overflow and require some bounding ‘win-
dow’, i.e., a running frame or an exponentially decreasing
weighting profile. Both these approaches are inefficient for
intensive-processing or Big data contexts, since they intro-
duce hard or soft filtering, respectively, to the original data
set, essentially forcing the calculations upon a smaller subset
rather than the complete data set.

The goal of this work is to formulate recursive estima-
tors for arithmetic mean and (sample) standard deviation
of Normal distributions, which are of minimum storage
complexity (one-step-back), arithmetically robust for error
resiliency and inherently parallelizable at the lowest possi-
ble level (arithmetic operators).

2 RECURSIVE STATISTICS

Theorem 1 (Recursive Generalized Means (RGM)). Let:
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the Generalized Means (GM) [2] of order k ∈ Z of a data set
xi ∈ R. Then Eq.1 can be calculated recursively via:
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where xk
n+1 is an additional data value, n ≥ 1 and x̄1 (k) =

k
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Proof: From Eq.1 follows that:
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which derives Eq.2.

Corollary 2 (Recursive Arithmetic Mean (RAM)). Let:
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the arithmetic mean value (Normal distribution) [1] of a data set
xi ∈ R. Then Eq.3 can be calculated recursively via:
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where xn+1 is an additional data value, n ≥ 1 and m1 = x1.

Proof: Eq.4 is directly derived from Eq.2 for k = 1.

Corollary 3 (Recursive Standard Deviation (RSD)). Let:
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the sample standard deviation value (Normal distribution) [1] of
a data set xi ∈ R. Then Eq.5 can be calculated recursively via:
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where xn+1 is an additional data value, n ≥ 1 and s1 = 0.

Proof: Following the same outline for the proof of Eq.2
for k = 2 and data set values yi = xi −mn, it follows that
for sample standard deviation (i.e., dividing by n− 1):
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which derives Eq.6.

3 EXPERIMENTAL EVALUATION

For the actual assessment of the estimation accuracy when
using the recursive formulas of Eq.4 and Eq.6, a simple
program in Matlab/Octave was used. The idea is to use
a standard Normal distribution (m = 0, s = 1) to create
randomized sets of increasing size and track the errors
between the recursive versus the true (full-set) estimations
of arithmetic means and sample standard deviations. The
listing of the program is illustrated in Algorithm 1.

Algorithm 1 Matlab/Octave code for testing arithmetic
accuracy of RAM and RSD.

c l e a r a l l ;
R=[1 0 0 ] ;
Nmax=100000;
f o r N=1000 :1000 :Nmax

X=randn (N, 1 ) ; % norm . d i s t r . (m=0 , s =1)
m=X ( 1 ) ; s =0;
f o r k =2: length (X)

m=(k−1)/k∗m+X( k)/k ;
s =(k−2)/(k−1)∗ s +(X( k)−m)^2/(k−1) ;

end ;
c =[N m−mean(X) s q r t ( s)−std (X ) ] ;
R=[R ; c ] ; disp ( c ) ;

end ;
f i g u r e ( 1 ) ;
plotyy (R ( : , 1 ) , R ( : , 2 ) , R ( : , 1 ) , R ( : , 3 ) ) ;
t i t l e ( ’ Accuracy : Recursive Mean and Stdev ’ ) ;
x l a b e l ( ’ sample s i z e (N) ’ ) ;
y l a b e l ( ’ e r r o r : ( r e c u r s i v e )−( t rue ) ’ ) ;
legend ( ’RAM−AM’ , ’ RSD−SD ’ , . . .

’ Location ’ , ’ SouthEast ’ ) ;

Figure 1 illustrates a test run of Algorithm 1 for sam-
ple set sizes of N = 103, ..., 105. The test was conducted

in double precision arithmetic (default), which provides
arithmetic accuracy of eps ' 5.5 · 10−15. From the plot it
is clear that the recursive estimation of the arithmetic mean
(RAM) remains within the region of eps as expected, since
Eq.4 is an unbiased estimator of first-order arithmetic for
the true arithmetic mean (AM). On the other hand, the
plot illustrates that the recursive estimation of the sample
standard deviation (RSD) is significantly larger than eps,
since Eq.6 is a biased estimator (depends on mn) of second-
order arithmetic of the true sample standard deviation (SD),
but asymptotically approaches zero as the data set size
increases.

Fig. 1. Experimental evaluation of RAM and RSD (eps ' 5.5 · 10−15)

4 DISCUSSION

As mentioned above, the goal of this work is to formulate
recursive estimators that are of minimum storage complex-
ity, arithmetically robust and inherently parallelizable.

Both Eq.4 and Eq.6 are formulated in a way that mini-
mizes the arithmetic errors and the possibility of arithmetic
overflow in case of excessively large data set size or number
of iterations. In practice, this depends almost entirely on
the two divisions in each formula, i.e., first calculate the
fraction and then multiply it with the previous estimation
(see Algorithm 1).

The storage required by these estimators is clearly one-
step-back. This means that, no matter what the data set
size is or (equivalently) how many times the recursion is
executed, Eq.4 and Eq.6 never uses more than the previous
estimation of mn and sn, respectively, plus the newly arri-
ved data value xn+1. This is particularly useful in extremely
large data sets for avoiding arithmetic overflows, e.g. if the
calculations were based on successive updates to

∑n
i=1 (xi)

and
∑n

i=1 (xi −mn)
2, as these are usually implemented

iteratively.
Finally, it should be noted that Eq.4 and Eq.6 are in-

herently parallelizable with a fixed number of calculations
independently of data set size N , i.e., exhibit algorithmic
complexity O(1). Additionally, even Eq.6 can be imple-
mented using only additions and multiplications (keep s2n
instead of sn), as it is the case for Eq.4. This means that these
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formulations are not only parallel-ready but, morevover,
implementable in DSP or GPU hardware, which provide
massively parallel, simple-arithmetic processing cores in the
sense of single instruction multiple data (SIMD).
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