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ABSTRACT

Objective: Localized texture analysis of breast tissue on mammograms is an issue of major importance in mass
characterization. However, in contrast to other mammographic diagnostic approaches, it has not been investigated in
depth, due to its inherent difficulty and fuzziness. This work aims to the establishment of a quantitative approach of
mammographic masses texture classification, based on advanced classifier architectures and supported by fractal
analysis of the dataset of the extracted textural features. Additionally, a comparison of the information content of the
proposed feature set with that of the qualitative characteristics used in clinical practice by expert radiologists is

presented.

Methods and Material: An extensive set of textural feature functions was applied to a set of 130 digitized

mammograms, in multiple configurations and scales, constructing compact datasets of textural “signatures” for
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benign and malignant cases of tumors. These quantitative textural datasets were subsequently studied against a set of
a thorough and compact list of qualitative texture descriptions of breast mass tissue, normally considered under a
typical clinical assessment, in order to investigate the discriminating value and the statistical correlation between the
two sets. Fractal analysis was employed to compare the information content and dimensionality of the textural
features datasets with the qualitative information provided through medical diagnosis. A wide range of linear and
non-linear classification architectures was employed, including linear discriminant analysis (LDA), least-squares
minimum distance (LSMD), K-nearest-neighbors (K-nn), radial basis function (RBF) and multi-layer perceptron
(MLP) artificial neural network (ANN), as well as support vector machine (SVM) classifiers. The classification
process was used as the means to evaluate the inherent quality and informational content of each of the datasets, as
well as the objective performance of each of the classifiers themselves in real classification of mammographic breast

tumors against verified diagnosis.

Results: Textural features extracted at larger scales and sampling box sizes proved to be more content-rich than
their equivalents at smaller scales and sizes. Fractal analysis on the dimensionality of the textural datasets verified
that reduced subsets of optimal feature combinations can describe the original feature space adequately for
classification purposes and at least the same detail and quality as the list of qualitative texture descriptions provided
by a human expert. Non-linear classifiers, especially SVMs, have been proven superior to any linear equivalent.
Breast mass classification of mammograms, based only on textural features, achieved an optimal score of 83.9%,

through SVM classifiers.
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1. Introduction

The examination and analysis of mammographic images is a complex cognitive task that includes various aspects
of medical expertise and conclusive clinical findings. The visual task of clinical evaluation and diagnosis, based on

mammographic image screening, consists of a number of different factors in multiple scales and levels of
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decomposition, as approximately 80% to 85% of diagnostic information is retrieved from the appearance of the
tumor itself [1-3]. The fine-scale organization of the informational content on the mammographic image is a key
factor in the detection of malignancy, as it represents the nature and structure and, hence, the quality of biological
tissues, as they are projected on the mammogram [4—6]. Similar textural features are also present in rare clinical
cases, where direct inference on probably benignancy or malignancy is much more complex [7,8]. These fine-scale
structural details are realized as visual patterns in the image and they are often referred to as “texture” of the
corresponding region. When the mammogram is digitized with adequate quality and resolution, these textural
patterns can be identified, analyzed and classified by a computer, based on the statistical properties and the spatial
correlations between the pixel values [9].

In clinical practice, an experienced physician often identifies textural information in the form of qualitative
characteristics and pathological findings, retrieved directly by examining the properties of the mammogram and
combines them effectively with other data available from sources other than the mammographic image itself. In the
context of successful clinical estimation, patient’s age and medical history have been proven issues of outmost
importance [10,11]. Furthermore, the presence of suspicious areas in the form of tumors is often examined by
investigating the textural content of the mammographic image [12,13]. Another significant property is the presence
and morphology of microcalcifications, as well as the shape and the morphology of the tumor itself [14—-18].

Many studies have been focused on the general issue of texture analysis on mammographic images, in the context
of detection of the boundary of tumors and microcalcifications [19,20], since the task of localization of tumors or
microcalcifications is, apart from attractive — due to its apparent usefulness —, comparatively easy to implement, as it
relies on the notable difference in contrast and intensity of the target from its surrounding parenchyma and therefore,
simpler processing and classification methods are needed. However, in the task of textural mass characterization, due
to its inherent difficulty, the selection of optimal parameters and configuration for the various textural feature
functions is still model-restrictive and case-specific [21-24]. Furthermore, there are only a few studies available,
related to the more general issue of investigating the inherent complexity of the extracted textural data and the
suggestive structure of the corresponding training datasets for classifiers [25].

This study is aiming at filling this void and is focused on three main areas of interest: (a) the investigation of

various properties of common textural features in relation to the sampling size and scale, (b) the investigation of the
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inherent complexity of texture datasets, using statistical and fractal analysis techniques, and (c) the application of
LDA, LSMD, K-nn, ANN and SVM classifiers for the evaluation of their efficiency in real diagnostic applications.

For the purposes of this study, an original mammogram database was studied in the context of verified clinical
results. The database contained detailed qualitative information for each mammogram, including a thorough and
compact list of clinical findings provided by a human expert. The statistical significance of the diagnostic
discriminative information for each one of these components, both separately and in combination, has already been
established [26]. An extensive set of textural feature extractors, in various configurations and scales, has been
applied on the mammogram database in order to construct complete datasets of textural “signatures” for benign and
malignant cases of tumors. Multivariate analysis of variance (MANOVA) [27,28] was also applied for the
construction of additional subsets of statistically independent textural features. Both the original and the reduced
datasets were analyzed using statistical analysis and fractal dimension techniques [25], in order to establish a lower
bound for the inherent dimensionality of the input space and how it is affected when using feature selection methods
like MANOVA. Finally, the texture datasets for various sampling box sizes and scales were applied in a wide range
of linear and non-linear classifier models, in order to evaluate the objective performance of each of the classifiers, as
well as the inherent quality and informational content of each of the datasets in real classification problems.

The core material presented in this study is organized in sections as follows. Section 2 contains all the details
regarding the base dataset and the methodologies used throughout the study. First, the digitized mammographic
database is described in detail. The complete method of the textural analysis and the corresponding parameters for
the localized image processing (e.g. sampling box sizes) is established in subsection 2.3, while subsection 2.4
describes the list of functions used as textural feature extractors. Subsection 2.5 illustrates a fractal-based method for
estimating the dimensionality and the complexity of the feature space of a dataset in a quantitative way, such that it
can be used as a method for estimating the descriptive power and content-richness of individual or combined textural
features. Finally, subsection 2.6 lists the range of linear, neural and SVM classifiers used in the final part of the
study.

Next, section 3 presents all the results of the textural features evaluation, the dataset fractal analysis and the
classification tests. Subsection 3.1 consists of two parts, namely (a) the significance analysis of the feature selections

with respect to their descriptive power and information content, and (b) the issues related to the significance of
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sampling box sizes and feature extraction parameters. The quality and optimality of feature selections are both
investigated using statistical significance analysis, as well as real classification runs. Subsection 3.2 illustrates the
detailed results of the fractal analysis of datasets; their descriptive power is analyzed thoroughly in both their original
and reduced-dimensionality versions, thus validating the use of optimal subsets of the textural features instead of all
of them. Additionally, fractal analysis was performed on the dataset of the qualitative features provided by an expert
physician on the same mammograms, in order to compare the intrinsic information content and dimensionality of the
proposed feature set and the qualitative features used in practice by the experienced radiologists, during the
diagnostic process. Furthermore, classification results and comparative classifier performance is presented in
subsection 3.3, thus proving the practical value and descriptive power of the selected textural features for diagnostic
purposes.

Finally, section 4 discusses the choices and implications of various aspects of the extraction of textural features,
the fractal-based analysis of the datasets and the performance of the various classifiers, while section 5 summarizes
the consequences of using similar methods for automated image analysis and computer-aided diagnosis. The study is
enriched with two appendices, one with a complete list of mathematical formulations for all the statistical functions
used as textural feature extractors and one with a brief description of the Tukey windowing function, used in fractal

analysis.

2. Material and Methods

According to the scope of this study, i.e., the textural features analysis, the dataset fractal analysis and the
classification models, six distinct resource materials were used: (a) a prototype mammographic image database, (b)
the corresponding dataset of qualitative features provided by the expert physician, (c) a thorough set of textural
feature functions, (d) multi-level localized image processing, (e) textural features extraction, (f) dataset fractal

dimension evaluation, and (g) linear, neural networks and SVM classification architectures.

2.1 Digitized Mammographic Database
The requirement for patient’s clinical history and positive histological verification of the benignancy or

malignancy of each case was assessed as one of extreme importance for the quality and validity of the subsequent
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results. Thus, a new special-purpose image set was assembled, using cases of mammographic tumors with complete
radiological evaluation and histological diagnosis [26]. The initial set contained 1350 mammograms of women that
proceeded for the evaluation of a clinical breast problem and it was used as a base for the final selection of tumor
cases with positive clinical verification by surgical biopsy and histological examination. For the construction of the
raw material for this study, a set of 130 mammograms were selected for digitization by an expert physician,
containing a total of 46 benign cases and 84 tumor malignancies of various types. The selection was made on the
basis of unbiased statistical distribution of the underlying textural features and the completeness of the dataset with
respect to various clinical findings, always focused in pathological cases that included presence of at least one
suspicious mass. In the set of 130 mammograms, almost two-thirds of the cases are malignant because many
different types of malignancies had to be represented in the database with an adequate statistical sample. For each
mammogram, a complete list of qualitative information was provided by the attendant physician [26], containing
details about the age of the patient, presence and number of tumors, microcalcifications, density of the tumor,
percentage of fat inside the mass, tumor boundary vagueness, tumor homogeneity, tumor shape type and clinical
diagnosis. All these qualitative clinical descriptions, as well as their logging range of values, is presented in Table 1.
The various qualitative details were included according to the expert’s recommendations and proposals, as explicit
information related to various types of malignant mammogram abnormalities, including architectural distortion,
microcalcification clusters, micro-lobulated or stellate masses [10,11,29].

The mammograms where digitized at a resolution of 63 um (400 dpi) at 8-bit gray level, which is consistent with
other typical image databases of digitized mammograms that are used as a reference in similar studies [30]. The final
set of 130 mammograms was used in all cases with no reduction in spatial resolution or gray level depth.

Advanced algorithms for automated mammographic lesion detection have been proposed, however their level of
sensitivity and specificity is still under investigation [21—24]. Furthermore, their fine-scale accordance to the

corresponding expert’s detailed description of tumor boundaries, especially in cases of non-trivial stellate distortions,
exhibits many practical problems [22]. In order to obtain tumor boundaries of high quality and detail, a manual
segmentation was applied. Specifically, each tumor was manually described by the radiologists at the maximum

available spatial resolution (Figure 1), using a high-resolution digitizer device and stored as an embedded boundary
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descriptor via alpha channel data. These tumor descriptions were subsequently used as a fine-scale tissue

inclusion/exclusion mask for all subsequent extraction and analysis of textural features.

2.2 Datasets and Features

A large set of textural feature functions were applied in multiple configurations, in order to investigate the
relative effect of the quality of texture information extracted from the digitized images. The extracted feature values
were normalized against average and standard deviation for each dimension of the dataset using Gaussian

distribution approximation, according to the following formula:

y, = )

where X and G are the mean value and the standard deviation N-dimensional vectors, respectively.

It should be noted that, although feature values within the datasets were normalized according to equation (1), the
pixel values of the images were not. This means that the textural features were calculated upon the original grayscale
pixel values, without any histogram or other modification. The reason for this is the fact that, with the exception of
the six first-order statistics, all the other textural feature functions presented in Appendix II are resilient to exact pixel
values. Instead, they calculate statistical properties upon the co-occurrence and run-length matrices of the pixel
values, i.e., they highlight correlations and relative differences between the values rather than upon the absolute
values themselves. Even if the original images refer to different x-ray exposure parameters, the content and physical
meaning of these textural features relates to the inherent micro-level structural details of the underlying tissue, not
the absolute values of individual pixels.

For the six functions of the first-order statistics, exposure level is indeed important for the overall brightness of
the final image. However, since all mammograms were acquired using optimal x-ray exposure settings for the entire
breast area, the gray-level histogram profile within the tumor region should be more relevant to the actual properties
of the underlying tissue itself (e.g., density, homogeneity, etc), rather than any explicit differences in the exposure
rates. Furthermore, the same first-order statistics for the entire breast area are also included in the datasets, so that

these intra- and extra-tumor statistics can be used in conjunction or comparatively by a classifier.
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In all cases, normalizing each feature (i.e. dimension) by equation (1) ensures that the datasets used for training
and testing the classifiers are guaranteed to exhibit zero-mean normal distributions, for best results in neural and

SVM classifiers [31,32].

2.3 Localized Image Processing

Each mammographic image was first segmented into mass and non-mass regions according to the tumor’s
boundary description provided by the experienced physician. The identified mass tissue areas were further divided
according to two configurations, into continuous sub-regions of sampling boxes and sizes of 20 and 50 pixels,
respectively. The specific sampling box sizes correspond to spatial resolution of 1.270 mm and 3.175 mm of mass
tissue, respectively, which were asserted by the expert as segments of size adequate to capture significant textural
information content in mammograms. Clinical studies have established that the expected diameter of tumors ranges
from 3 mm up to 30 mm [21], or roughly 48 to 476 pixels for the specified image scanning resolution (63 pm). This
means that sampling box sizes larger than 3 mm or roughly 50 pixels wide would be too large for some tumors.
Additionally, when statistical features are calculated over increasingly large areas of a digital image, the results refer
more to the macro-scale morphological and structural properties rather than the micro-scale textural properties of the
image content [9]. Similarly, any box size significantly smaller than 3 mm or 50 pixels should also be discarded as it
would not refer to any valid tumor but to other features at smaller scales, such as microcalcifications or noise.
Therefore, a typical size of 50 was decided as a standard baseline for the sampling box (Figure 2), plus one much
smaller size at 20 pixels for investigating the differences in quality and content of the textural features when the size
of the sampling box changes.

In the configuration of sampling box size of 1.270 mm (20 pixels), the sampling region was significantly lower
than the minimum expected tumor size of 3 mm. Consequently, exhaustive texture sampling was considered
redundant and a box-interleaving scheme of one-by-one in each dimension was employed (Figure 3). The
discriminating value and statistical significance of the textural features were not affected by this sub-sampling
scheme, since the size of the smallest object of interest, i.e., a tumor of minimum diameter, is still more than twice as

big as the size of the 20-pixel sampling box. In the case of 3.175 mm sampling box size (50 pixels), i.e., roughly the

pg.8-32



%% MANUSCRIPT ***

same size as the smallest expected tumor diameter, no box-interleaving scheme was applied in order to preserve the
complete informational content of each image sample.

For each sampled box, grayscale co-occurrence [33,34] and run-length [35] matrices were computed for three
distinct neighboring pixel configurations, according to a distance factor de {1,2,3}. The application of each one of
the three pixel-neighboring configurations throughout the entire spatial matrix of the current sampled box created
three corresponding sampling modes at pixel-level, essentially affecting the exact pixels upon which the textural
feature functions were applied (Figure 4). The reason for using multiple distance factors was to evaluate the effect of
sampling at various pixel levels, in relation to the quality and consistency of the extracted textural features, as well as
the investigation of different information content, captured at different scales between neighboring pixels.

For each different pixel-neighboring configuration, all the available (primary) directions were used for the
calculation of co-occurrence and run-length matrices. The number of available angular directions is equal to the half
of the total number of pixels found at distance d from the point under examination (i.e., the center pixel) of the
current box (Figure 4). That is because any two opposing peripheral pixels define a unique angular direction.
Consequently, for d=1 there were 4, for d=2 there were 8 and for d=3 there were 12 (unique) angular directions
available, i.e., over the numbered cells in graphs (a), (b) and (c), respectively, in Figure 4. The direct effect of having
more than four angular directions (two orthogonal and two diagonal) is essentially the computation of the co-
occurrence and run-length matrices over more directions, i.e., more samples. The corresponding textural features are
now calculated over more image data, without altering their statistical, physical or image-related properties. Thus,
this scheme enhances the informational content and the quality of subsequent statistical properties of these features,
using increased scale and tissue sampling area.

For each angular direction, the complete set of the available texture functions was computed. The average and
range (min-max) of the feature values over all the available directions were stored for each specific distance factor
(d=1,2,3) as a compound textural “signature” of every image sample. The result was the creation of two compound
texture datasets, namely for sampling boxes of size 1.270 mm (20 pixels) and 3.175 mm (50 pixels), each containing
a complete set of textural features over the three pixel-neighboring configurations, as well as a set of typical first-

order gray-level statistics for each complete image. Appendix I contains the list and the mathematical formulation of
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all first-order, second-order and run-length statistics that were used as textural feature functions for the creation of

these datasets.

2.4 Textural Features Extraction

From each sampled sub-region, texture information was examined by extracting first order statistics, second order
statistics and gray-level runs. All subsequent analysis preserved the original gray-level and spatial resolution, and all
runs were examined up to their full length with no concatenation or limits in maximum runs.

First order statistics of the gray-level distribution for each image sub-region matrix I(x,y) were examined through
six commonly used metrics proposed by Haralick et al [33,34,36]. Namely, min value, max value, average value,
variance, skewness and kurtosis were used as descriptive measurements of the overall gray-level histogram of the
mass. The complete list and analytical formulas of these statistics are presented in detail in Appendix 1.

Second order statistics of the gray-level distribution, derived from spatial distribution gray-level matrices
(SDGM), were examined through fourteen commonly used metrics also proposed by Haralick et al [33,34,36]. The
complete list and analytical formulas of all the second-order statistics are also presented in detail in Appendix L.

Gray-level runs, derived from run-length matrices (RLM), were examined with the introduction of five
commonly used run-length metrics, proposed by Galloway [35,36]. Namely, short runs emphasis, long runs
emphasis, run-length non-uniformity and run percentage were used as descriptive measurements of each of the run-
length matrix calculated over the sampled image sub-regions. The complete list and analytical formulas of all the
run-length statistics are also presented in detail in Appendix I.

From the 14 second order statistics features and the 5 run-length descriptive measurements, only the average and
the range of values over all the distinct angular directions (per each of the three neighboring distances) were
computed and stored in the texture datasets. Thus, 38 calculated values were utilized (per each of the three
neighboring distance configurations encountered) as features representing the second and higher order statistics of
mammograms texture. Combined with the 6 first order statistics feature measurements, the total number of features
extracted for each sampled sub-region of the image was 120.

A separate dataset was created for every sampling box size, namely 1.270 mm (20 pixels) and 3.175 mm (50

pixels). These datasets were subsequently used for fractal dimension analysis of the texture, as well as by the

pg.10-32



%% MANUSCRIPT ***

classifiers for both testing and training purposes, employing standard k-fold cross-validation techniques for

partitioning the complete sets into distinct subsets [31,37—39].

2.5 Fractal Dimension Analysis
In order to establish a preliminary estimation of the complexity and intrinsic dimensionality of the texture
datasets, fractal feature analysis was applied. Fractal feature analysis, specifically the calculation of the intrinsic

fractal dimension of the input datasets, provides the quantitative means of investigating the degree of linear

independence and the correlation between the available features by means of dimensionality of the resulting feature
space [40,41]. Fractal dimension has also been used as an alternative way of characterizing the discriminative power
of feature combinations, thus providing a non-statistical way of ranking them in terms of importance for the

classification task [25]. The two most commonly used methods of calculating the fractal dimension of a dataset are

the pair-count (PC) and the box-counting (BC) algorithms [41—43].

In pair-count algorithm, all Euclidean distances between the samples of the dataset are calculated and a closure
measure is then used to cluster the resulting distances space into groups, according to various ranges (), i.e., the
maximum allowable distance within samples of the same group. The PC(r) value is calculated for various sizes of r

and it has been proven that PC(r) can be approximated by:

PC(r)=K-r” )

where K is a constant and D is called the pair-count exponent. The PC(r) plot is then a plot of: logPC(r) versus log(r),

i.e., D is the slope of the linear part of the PC(r) plot over a specific range of distances (r). The exponent D is called

correlation fractal dimension of the dataset, or D,.

The box-counting approach is commonly used when the datasets contain large number of samples, usually in the
order of thousands [25,41]. In this case, instead of calculating all distances between the samples, the input space is

partitioned into a grid of n-dimensional cells of side equal to r. Then, the samples inside each cell are calculated and
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the frequency of occurrence (C,), i.e., the count of samples in a cell, divided by the total number of samples, is used

to approximate the correlation fractal dimension by:

dlog) (C))’
- Olog(r)

2

Ideally, both pair-count algorithm and box-counting algorithm calculate the same value, i.e., the correlation
fractal dimension D, of the initial dataset, which characterizes the intrinsic or “true” dimension of the input space

[41]. In other words, D, would be the minimum dimension of the dataset if only “perfect” features were allowed, i.c.,

totally uncorrelated and with the best discriminative power available within the specific set of features.

In this study, fractal analysis was applied to both the initial set of qualitative characteristics, provided by the
expert physician, as well as the constructed datasets of textural features, in order to compare the information content
of each set. In all cases, the pair-count algorithm employing Euclidean distances was used, due to the relatively small
number of samples available, as well as the better stability and accuracy for D, against the box-counting approach.

For better accuracy, a parametric sigmoid function was used for fitting between the points of the PC(r) plot, in

order to calculate the slope of the linear part. In the parametric sigmoid function:

1
=Y, +C, - 4
YT T exp(-C. - (x- X,)) @

(Xo.Y) identifies the transposition of the axes, while Cx and Cy identify the appropriate scaling factors. Specifically,
the value of Cx affects the steepness of the central part of the curve, while Cy specifies the Y-axis width of the

sigmoid curve. Then, the slope of the linear part around the central curvature point, i.e., the value of D,, is:

2 C,-C
VX)L p %) GG

5
ox? 0x 4 ©)
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The fitness of the parametric sigmoid over a range of samples assumes uniform error weighting over the entire
range of data. Thus, if a large percentage of points lies near the upper bound (y=Ymax) or lower bound (y=Ymin) of
the Y-axis range, as in most cases of PC(r) plots, then the fitness in the central region of the sigmoid, i.e., where the
slope is calculated, can be fairly poor. For this reason, an additional weighting factor was introduced in the fitness
calculation in this study. Specifically, the Tukey (tapered cosine) parametric window function [44,45] was applied
over the Y-axis range when calculating the overall fitness error of the sigmoid. The Tukey window is parametric (q)
in terms of the exact form around its center, ranging from completely rectangular to completely triangular or
Hanning window. When applied over the Y-axis range, the rectangular case (q=0) is equivalent to calculating the
fitness error uniformly over the entire range, while the triangular case (g=1) is equivalent to calculating the fitness
error primarily against the central point of the sigmoid curve. In this study, all fitness calculations employed Tukey
windows as error weighting factors, using parameters g in the range between 0.5 and 1.0 for optimal slope results.

The exact formula and details of the Tukey window is presented in Appendix II.

2.6 Classification and Testing

Although the textural features contained in the two initial datasets could be used for the estimation of any one of
the qualitative data (Table 1) except patient’s age, classifications were conducted against clinical diagnosis only, as it
is the dominant data component required in most clinical cases.

Several classifier architectures were applied during the classification phase. A LDA model was used in the form
of linear classifier [46]. A LSMD was employed, using Mahalanobis distance measure and least-squares dataset pre-
processing on the input [31,47]. A K-nn model was also used, including estimation of an optimal value K for the size
of the neighborhood set [31].

Two different types of neural network architectures were employed: a RBF ANN with Gaussian activation
functions and linear output functions [48], and a MLP ANN with hyperbolic tangent internal activations and softmax
output functions [49], both implemented with topology adapted to each configuration and dataset. All topologies
included one hidden layer of optimized size.

For more advanced investigation of the feature set, typical SVM models were applied in relation to the final

diagnosis. Specifically, the C-Support Vector Classification (C-SVC) model was used in combination with standard
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RBF kernel functions, optimizing the penalty factor (C) and the Gaussian spread parameter (o) during training [32].
SVM classifiers that employ various non-linear kernels are considered state-of-the-art in Pattern Recognition today
[31,50] and they can be regarded as a realistic upper limit in the performance of automated systems in similar
applications in practice.

For practical classification applications of high dimensionality, k-fold cross validation techniques, specifically

leave-one-out and leave-k-out methods [31,37—39], are usually employed in order to compensate with relatively

small input datasets that have to be used both for training and testing. In this study, all configurations used leave-one-
out method for dataset manipulation during training and testing phases, combined with optimal feature set selection
for the linear classifiers, or the complete selected (optimal) feature sets for the neural networks. SVM classifiers
employed limited feature set optimizations, using iterative runs of enlarging inclusions of several features, available
on the feature ranking lists created by MANOVA significance analysis. One of the reasons that full feature set
optimization was not applied with ANN or SVM architectures, is that the training phase, combined with the
optimization of the size of the hidden layer in the case of ANN, becomes computationally too expensive.
Furthermore, it also relies on the fact that trained ANN architectures apply optimal weight values at the input layer,
thus they can be examined during a post-training pruning phase to optimally reduce the dimensionality of the input
set if necessary [S1]. SVM classifiers have also proven exceptionally efficient in classification problems of high
dimensionality [31,32,47]. In all cases, classifiers were re-trained for every new dataset that was produced after the
extraction of one training sample, according to the leave-one-out method, and then classified this sample treating it
as unknown input. Thus, the quality and generalization of the classification results depended solely on the quality

and unbiased distribution of the training samples in the complete dataset for each case.

3. Statistical Analysis and Classification Results

The results of this study can be grouped into three main categories, one for each of the initial scopes of
investigation: (a) the effect of different textural feature functions and configurations, in relation to sampling image
sub-regions box sizes and pixel neighboring distance values (scales), (b) the evaluation of the intrinsic descriptive
power of each of the datasets via fractal dimensionality analysis, and (c) the performance of a wide range of linear,

neural and SVM classifiers in real diagnostic applications.
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3.1 Textural Features and Configurations

Within the scope of textural features analysis, the two initial texture datasets (box sizes of 20 and 50) were
employed with one or more pixel neighboring distances. The study was focused in two issues: (i) the statistical
significance analysis and feature selection using MANOVA, and (ii) the effects of using smaller (20-pixel) or larger
(50-pixel) sampling boxes, as well as the effects of using one (d=1) or more (d=1,2,3) pixel neighboring distances.

(1) Statistical significance analysis and feature selections

Due to the high dimensionality of the initial texture datasets, each containing 120 discrete features, the
MANOVA method was employed to select the most prominent features in a statistically independent way. Features
from each texture dataset were rated and consequentially sorted by applying MANOVA significance analysis. From
the resulting ranked sets, subsets of the best 10 to 20 features were evaluated in real classification cases against
verified diagnosis, using all the linear and non-linear classifiers.

Results from the initial feature rankings were further investigated through exhaustive search for optimal
combinations, as estimated against verified diagnosis by LDA and LSMD classifiers. As a result, the two lists
provided by MANOVA were annotated according to these optimized feature subsets, underlying the features
participating in one or more of these optimized feature subsets.

Table 2 and Table 3 present the ten best MANOVA selections for each of the initial texture datasets, i.e., for
sampling box size of 20 and 50 pixels, respectively. Underlined features denote the ones that were selected within
optimal feature subsets in both the LDA and the LSMD classification setups.

(i1) Sampling box sizes and pixel-neighboring modes

During the textural features analysis, six classification configurations were used in total. Specifically, the
classification tests for optimizing feature selection included the 20-pixel and the 50-pixel box size cases, at pixel
distances d={1} and d={1,2,3}. For better comparison between the different pixel-neighboring modes, any features
on first-order statistics were permitted in a third separate case, essentially including all 10 of the initial MANOVA
selections. Evaluation was conducted by using LDA and LSMD classifiers, exploiting all possible combinations of
the current feature set and applying leave-one-out testing for evaluating the performance of each classifier on the

complete texture datasets.

pg.15-32



%% MANUSCRIPT ***

For the texture dataset of sampling box size 20, the first of the three configurations included pixel neighboring of
distance equal to one (d=1). The best accuracy achieved was 55.1% only by the LSMD classifier, followed at 51.1%
by the LDA classifier. The second configuration included all three available pixel distances (d=1,2,3). The best
accuracy rate achieved was 60.8% by both LDA and LSMD classifiers. Finally, a third configuration included all
three available pixel distances (d=1,2,3) plus all first-order statistics. The best accuracy achieved was 62.8% for both
the LDA and the LSMD classifier. Table 4 summarizes the classification results for the 20-pixel box dataset.

For the texture dataset of sampling box size 50, the first of the three configurations included pixel neighboring of
distance equal to one (d=1). The best accuracy achieved was 62.3% by both the LDA and the LSMD classifiers. The
second configuration included all three available pixel distances (d=1,2,3). The best accuracy rate achieved was
66.8% by both LDA and LSMD classifiers. Finally, a third configuration included all three available pixel distances
(d=1,2,3) plus all first-order statistics. The best accuracy achieved was 69.0% for both the LDA and the LSMD

classifier. Table 4 summarizes the classification results for the 50-pixel box dataset.

3.2 Dataset Fractal Dimension

The calculation of the fractal dimension required the calculation of the correlation fractal dimension, i.e., the D,
value, over each of the two texture datasets. Due to requirement for the best possible accuracy, when calculating the
D, value, the analytical form of the pair-counting algorithm was chosen instead of the box-counting algorithm. Due
to the increased storage and processing requirements of this method, instead of calculating the D, value over the
entire dataset, it was averaged over multiple runs over smaller random subsets of 500 samples each. In all cases, the
averaged D, value was confirmed to exhibit less than +3% variation over all runs; thus it was used as a more realistic
approximate when compared to the D, value, returned by the box-counting algorithm over the entire dataset.

Figure 5 and Figure 6 illustrate the PC(r) plots for the normalized texture datasets for sampling box sizes of 20
and 50 pixels, respectively. In both cases, no additional error weighting was required when calculating the fitness,
i.e., the initial sigmoid function provided a fairly accurate estimation of the slope in the central part of the plot. A
semi-rectangular (g=0.5) Tukey window was required in the case of the qualitative features dataset (Table 1), in

order to achieve optimal fitness for the sigmoid function in the central part of the curve.
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Table 5 summarizes the results of D, value, i.e., the intrinsic fractal dimension, calculated over the two texture
dataset, including all 120 features or using only the MANOVA selections for each dataset. The first column contains
the D, values for the complete dataset (120 features), while the second and the third columns contain the
corresponding D, value when MANOVA is applied to select only the top-20 and top-10 statistically independent
features, respectively. The calculated values are compared against the D, value of the original dataset of the
qualitative features (Table 1), except the diagnosis itself. Although the exact values of these features are approximate
quantifications provided by the expert physician, the corresponding D, value of this datasets can be used as a
guideline. As the intrinsic fractal dimension essentially characterizes the descriptive power of the corresponding
features [25], this D, value can be considered as the minimum inherent dimensionality of any textural or other
dataset, required for describing the input samples with the same or higher level of quality, in terms of information

content.

3.3 Classification Performance

The third phase of the analysis included real classification setups against verified diagnosis, using linear and non-
linear classification architectures. Specifically, the 10 best MANOVA feature selections, from the complete set of
120, were used as training sets for all classifier models, including LDA, LSMD, K-nn, RBF and MLP ANNS, as well
as SVMs. The choice of using only the top-10 MANOVA feature selections, instead of the top-20 or the entire 120-
featutre dataset, was based on the fact that the comparative fractal analysis of these datasets has proven the validity
of using only a small subset of powerful features instead of all of them. Table 5 shows only small degradations in the
descriptive power of such small subsets when compared to the complete feature set, which means that even the top-
10 feature subset is enough to describe the full feature with great detail and complexity. Furthermore, the time
requirements of using excessive input dimensionality in combination with leave-one-out cross-validation and
sophisticated classifiers, like ANNs and SVMs, makes the training process impractical with little or no expected gain
in the actual performance of the increased-size classifier.

The two texture datasets for 20-pixel and 50-pixel box sizes were used separately in comparative training
configurations, without restrictions over the pixel-neighboring distances (d=1,2,3) in the MANOVA selections. All

configurations included training patterns grouped according to their source image. In this way, despite the fact that
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each training pattern referred to only a local sample of the complete mass, it constituted one complete texture
descriptor tagged with the appropriate “benign” or “malignant” diagnosis identifier.

In order to assess the true performance and generalization of each classifier model, the leave-one-out method was
employed in all cases during training for both linear and non-linear classifiers. Specifically for ANN and SVM
classifiers, instead of using the entire dataset, small subsets of 1000 random samples were used. The training and
evaluation cycles were repeated multiple times, using a new random subset each time, and the final classification
accuracy was calculated as the average over all runs, with standard deviation verified to be +£1% at most in all cases.

For the 20-pixel box dataset, the results of classification accuracy ranged from 62.6% to 80.4% according to the
exact classifier selection. Both the LDA and LSMD classifiers achieved only the lowest performance of 62.6% even
when using optimized combinations of features. Next, the MLP and RBF neural classifiers with optimized topology
scored 74.4% and 71.3% correspondingly. The overall best accuracy was achieved by the SVM classifier at 80.4%,
followed very closely by the optimized K-nn classifier (k=18) at 80.3%.

For the 50-pixel dataset, the results of classification accuracy ranged from 69.0% to 83.9% according to the exact
classifier selection. As in the first dataset, both LDA and LSMD achieved the lowest score equally at 69.0%. The
RBF neural classifier achieved 72.8% and the MLP classifier outperformed it with better accuracy at 78.2%. Again,
the overall best performance was achieved by the SVM classifier at 83.9%, followed closely by the optimized K-nn
classifier (k=17) at 83.6%.

It should be noted that, although ROC analysis of classifiers is common in medical applications, it was not
employed in this study. The main property of ROC curves is their qualitative presentation of a classifier’s sensitivity
and specificity levels for various decision thresholds [52]. However, their contribution become obscure in cases were
clear quantitative and comparative results are needed for more than one classifier, or more than two output classes
are involved [53]. In terms of a ROC curve, the best accuracy rate is represented by the point that exhibits the
minimum distance from the ideal classifier response, that is the point (0,1) in the ROC space. Since this study is
focused on investigating the discriminative power of textural features and their relative efficiency when used with
various classifier architectures, the optimal performance was measured as the single value of their best accuracy rate

that is calculated directly from the corresponding confusion matrix, instead of a ROC curve.
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Table 6 summarizes the best scores of all classifiers for both texture datasets when the top-10 MANOVA

selections of textural features were used.

4. Discussion

The extraction and analysis of localized textural features over the breast tissue is inherently related to the
characterization of the tissue itself [12,13]. Thus, any qualitative characteristic of the clinical appearance of the tissue
inside and around suspicious tumor areas can be investigated via texture analysis. This means that all of the clinical
features included in Table 1, except the “external” data regarding the patient’s age, could be statistically analyzed
and predicted on the basis of the texture of the digitized image over the corresponding tissue areas. However, the
most important and practically useful configuration in clinical applications is the one that incorporates various data
inputs and combines them in arbitrary schemes, in order to produce a valid and realistic assessment regarding the
probable benignancy or malignancy of a suspicious breast tumor. As the topic of textural feature functions has been
thoroughly investigated in other general or case-specific studies [33—36], this investigation was focused primarily on
the appropriate use and optimization of the various textural feature functions when the target is the clinical
assessment of suspicious tumors in mammograms.

(1) Textural features extraction

There are three main issues related to the texture and the way it is processed in mammographic images: the
sampling box size, the pixel-level processing scale and the statistical functions used to characterize the nature and
type of the texture itself.

The results from the statistical significance analysis via MANOVA, as well as analytical classification runs using
linear classifiers, have proven that the exact configuration of the textural feature functions is an issue of outmost
importance. Table 2 and Table 3 show that, in a total of 20 feature selections, only three of them refer to 1st order
statistics of the gray-level and only four of them refer to 2nd order or to run-length statistics using no box
interleaving, i.e., scaling factor. In Table 2, i.e., for sampling box size of 1.270 mm (20 pixels), there is only one 1st
order statistic (mean) and nine statistics of the co-occurrence or run-length matrices, from which only one refers to
pixel-neighboring mode at distance d=1. Similarly, in Table 3, i.e., for sampling box size of 3.175 mm (50 pixels),

there are two st order statistics (max, skewness) and eight statistics of the co-occurrence or run-length matrices,
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from which only three refer to pixel-neighboring mode at distance d=1. Feature selections from both datasets clearly
indicate that scale is a very important aspect of texture for the distinct characterization of benignancy or malignancy
in local image processing. Furthermore, larger scales (d=2 or d=3) are preferred when a smaller sampling box is
applied, while slightly smaller scales seem to be adequate if the sampling box is large enough to capture the same
level of discriminating information when clinical diagnosis is concerned. Although there is no clear preference of
one pixel-neighboring mode over the others, it is certain that the performance and quality of the textural feature
functions in real diagnostic problems should be evaluated over multiple scales and configurations.

Results from Table 2 and Table 3 are also suggestive with regard to the sampling box size and its effect on the
information content captured. MANOVA selections indicate some preference over specific textural feature functions,
like run-length non-uniformity, run-length short run emphasis and co-occurrence maximum correlation coefficient,

but for various pixel distances or selections of mean versus the values’ range. This means that the exact selection of

optimal feature sets can be estimated only in combination with specific sampling box sizes. In other words, the size

of the image area, over which the texture is analyzed, affects not only the optimal scale by which the feature
functions are applied, but the optimal selection of these feature functions as well. In terms of preliminary
classification results, Table 4 clearly shows that in all cases the larger sampling box (50-pixel) is capable of
capturing the diagnostic information in greater detail and quality than the smaller sampling box (20-pixel). This
conclusion is verified by both linear classifiers, i.e., LDA and LSMD, as well as the slightly higher D, value for the
fractal dimension of the corresponding datasets (Table 5).

In most cases, the mean value of each textural feature was preferred instead of its values’ range, regardless of the
exact feature function. The three 1st order statistics included in Table 2 and Table 3 are all directly (mean, max) or
indirectly (skewness) related to the inherent bias of the tumor’s histogram towards black or white values, i.e.,
towards more fatty or dense tissue, correspondingly. Regarding the 2nd order statistics, there is no clear preference
between co-occurrence and run-length based feature functions, regardless of sampling box size and pixel-
neighboring modes.

(i1) Dataset fractal analysis over feature selections

The results presented in Table 5 clearly indicate that the complete texture datasets, containing 120 features each,

exhibit clearly higher D, values against the eight qualitative features in all cases. In other words, all texture datasets,
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even the ones reduced to top-20 features by applying MANOVA for optimal feature selection, employ at least the
same or higher descriptive power as the qualitative dataset does.

In all cases, the differences between the D, value of the complete datasets (dim=120) against the MANOVA
reduced subsets (dim=20 or 10) is less that -9%, for the sampling box sizes of both 20 and 50 pixels. This essentially

means that, even when using only a small subset of optimal textural features instead of the complete set, the intrinsic

descriptive power of the resulting datasets remains high. This requirement is crucial when designing minimal

classifier models for real diagnostic applications. As a result, the MANOVA analysis for the selection of the 10 or 20
highly uncorrelated textural features was considered safe and consistent, for constructing training datasets of minimal
dimensionality and similar descriptive power, for all the classifier test models employed in this study.

On the other hand, the corresponding D, value when using only the best 20 or 10 MANOVA selections of
features should not be characterized as conclusive for describing the complete texture datasets of dimension 120.
Although the D, values indicate an intrinsic dimensionality lower than 5, the descriptive power of the reduced
datasets, in terms of intrinsic fractal dimension, can be observed even when using the best 20 or 10 MANOVA
selections, with D, reducing down to -4% and -9%, respectively. Furthermore, non-fractal datasets produce PC(r)
plots of limited or no true linear sections for the calculation of slope, i.e., of the D, value, especially when the
distribution of the samples is sparse or clustered [43]. As a result, individual feature inclusions or exclusions produce
minimal fluctuations of the slope in the PC(r) plot, sometimes smaller than the fitness error of the sigmoid itself.
Therefore, the fractal methods for the complexity analysis of a dataset is not always a safe and conclusive means for
providing exact and optimal combinations of feature selections for classification purposes.

(1i1) Classifier models evaluation

Conclusive classification results proved the value of non-linear architectures versus the linear models. Results
from Table 4 demonstrate the almost identical performance of LDA and LSMD classifiers, in all cases except one
(for d=1). In both cases, the relatively low accuracy rates over the two texture datasets, i.e., 62.6% for the 20-pixel
box and 69.0% for the 50-pixel box sizes, proved that the inherent complexity of the problem is clearly non-linear.

Concerning neural networks, comparison between RBF and MLP architectures proved that RBF networks
resulted in somewhat lower overall accuracy for both texture datasets. Differences in success rates ranged between

4% and 7%, marginally favoring the choice of MLP over networks of similar topologies. The largest network
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topologies that were used included neural layers of sizes 10-6-2 (input-hidden-output), i.e., a total of 80 weight
parameters and a samples-to-weights ratio of 12.5:1. This restriction on topology sizes was enforced in order to
assure a relatively high generalization level and realistic classification results [31]. The overall best for neural
classifiers of maximal topology was achieved by MLP at 78.2%, using the 50-pixel box texture dataset.

A very interesting conclusion drawn from Table 6 is the fact that the K-nearest neighbor classifier achieved only
marginally lower accuracy rates compared to the SVM classifier. For the 20-pixel box texture dataset this difference
was only -0.1% with SVM at the overall best of 80.4%, while for the 50-pixel box texture dataset this difference was
only -0.3%, with SVM at the overall best of 83.9%. It should be noted that in both cases the K-nn classifier
employed a relatively large K-value, specifically K=18 and K=17, respectively. This essentially means that the K-nn
classifier required a relatively large sample of local “neighbors” in order to produce an accurate class prediction. The
K-nn approaches the statistically optimal prediction because for large values of K the majority of the points in the

local “neighborhood” will belong to the class corresponding to the maximum conditional probability [31,54]. In

other words, as the statistical sample of the local “neighborhood” increases in size, the classification selections and
overall performance of the K-nn classifier tends to approximate the Bayesian model for the same problem. The SVM
model embodies a similar optimality criterion, but in a structural way. Specifically, the SVM is trained in a way that

the final classifier exhibits the property of incorporating the maximum margin possible for the decision boundary

between the two classes [32,47,55]. In other words, the trained SVM classifier employs the best separation criterion
when predicting the correct class for an unknown sample, i.e., inherently the optimal generalization criterion [31,56].
As a result of having unbiased training datasets, the accuracy rates of optimal K-nn and optimal SVM classifiers

differed only slightly, favoring the SVMs in all cases.
5. Conclusion

Texture analysis is one of the most valuable and promising areas in breast tissue analysis and characterization.
Extensive clinical studies and interaction with human expert physicians have established a wide range of
mammographic properties, which are considered of outmost importance in the estimation of the clinical status and
the formulation of a robust diagnostic model. Most of these diagnostic features are related to textural properties of
the mammographic image, thus they can be investigated in a quantitative and systematic way via automated texture

extraction and analysis, directly from the digitized mammographic image.
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Extensive studies of these textural features in various scales and configurations are necessary in order to select a
useful set of texture descriptors, specialized for the specific task of breast mass tissue characterization. The sampling
box size and pixel-neighboring scheme proved to be very important factors in the optimization and final selection of
the various textural feature functions. Analysis of the intrinsic dimensionality of the resulting texture datasets have
established their robustness in terms of descriptive power, similar to the qualitative features that were provided by
the expert physician. Consequently, further studies have to be conducted towards the formulation and application of
scalable image texture descriptors, like 2-D wavelet decomposition structures [57] and fractal analysis of texture
[42,58-60], especially focused on the diagnostic problem of mammographic mass characterization.

The application of robust classifier models proved to be of outmost importance as well. Classification results over
linear models, employing exhaustive feature combination optimization, have provided some indications regarding
the most appropriate textural feature functions and their configurations for local processing, for classification
problems against the verified diagnosis of the complete tumor. As the problem becomes too complex for simple
linear systems, more efficient structures are necessary in order to exploit the complete range of the discriminating
power of the available texture datasets. MLP neural classifiers outperformed all other linear and ANN architectures,
while K-nn and especially SVM classifiers achieved the overall best accuracy rates.

As the texture involves only a portion of the complete information content of mammographic images, the
prospect of using texture in conjunction with other methodologies, like structural or morphological mass analysis,

into a combined diagnostic tool, is very promising.

Appendix I — Textural Features

1. First-order gray-level statistics
Denoting by I(x,y) the image sub-region pixel matrix, the formulae used for the standard statistics of the gray-

level are as follows:

1.Min: I, = mxigl{l(x, v} (6)
2.Max: I = mXa}{x{I(x, y)} (7
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2. Second-order gray-level statistics
Denoting by p(i, j) the normalized co-occurrence matrix, by N, the number of discrete gray levels of the images,

by p«(i) and py(j) the row and column marginal probabilities respectively, obtained by summing the columns or rows

of p(i, j):

e p, ()= p(ij) and p, ()= p(i). (2

p., ()= p(ij), k=2,3,..,2N,, (13)

=l j=1
i+j=k

px,y(k)=22p(i,j), k=0,1,...,N,— 1, (14)

the formulae used for the metrics of the SDGM are as follows:

1. Angular Second Momentum (ASM):

ii{p(i,j)}z (15)

=l j=1

2. Contrast:
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where:

#X=Z izp(i,j)}, (18)
#y=z jzp(i,j)}, (19)
0x=z (i—#x)2zp(i,j)}, (20)

5= (J-#Y)Qip(i,j)} 1)

j=t L

are the mean values and standard deviations of p, and p, respectively.

4. Sum of Squares — Variance:

>3 [G-s) 0 )] (22)

=l j=1

5. Inverse Difference Moment:

ZZL+(1-J) p (i, J)} (23)

=1 j=1
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6. Sum Average:

z_i[ipw (i)] (24)

7. Sum Variance:
2Ng

Z [(1 —sum_ average)2 Py (1)} (25)

i=2

8. Sum Entropy:

2N,

> [p., ()og[p., ()] (26)

i=2

9. Entropy:

S [o(i 1oe(p (i, )] @)

i=l =1

10. Difference Variance: i.c.,

Nu -1

varianceof p_ = Z[(l - f')2 P, (I)J (28)
i=0
where:

£ = [ip.., (i)] (29)

-1
i=0

11. Difference Entropy:

S lp. eelo, O] &

12 & 13. Information Measures of Correlation:
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where HX and HY is the entropy of py and py respectively and

nyz_ii[p(i,j)log(p(i,j))] (33)

i=l j=1

01~ 3 (i )ioe (p. (1) p, ()] 04

=1 j=1
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14. Maximal Correlation Coefficient:

(Second greatest eigenvalue of Q)"?

where:

. p(i,k)p(j.k)
Q0= 27 () 0

3. Run-length gray-level statistics
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Denoting by P the total number of pixels of an image, by p(i, j) the (i, j)-th element of the run-length matrix for a

specific angle 0 and a specific distance d (i.e., pyq_(1.])) and by N, the number of different run lengths that occur, the

formulae used are as follows:

$ 5 plid)
.2
1. Short Runs Emphasis: :H—J (37)

Zip(i,j)

=l j=1
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iiizp(i,j)

2. Long Runs Emphasis: —"——— (38)

N N

3 o)

i=l j=1

M)

Zip(i,j)

i=1 =1

3. Gray Level Non-Uniformity:

i[ip(id)y

4. Run Length Non-Uniformity: HN (40)

Zip(i,j)

i=1 =1

iip(hi)

5. Run Percentage: R (41)
P

Appendix II — Tukey Window

The Tukey windows [44,45] are cosine-tapered funcions. They are parametric against g, where g specifies the
exact form of the window, ranging from completely rectangular (g=0) to completely triangular or Hanning (g=1). In
this study, all fitness calculations employed Tukey windows as error weighting factors, using parameters q between
0.5 and 1.0 for optimal results.

The equation for computing the coefficients w[k] of a discrete Tukey window is as follows:

%{1+cos(2ﬂ(k_l)—ﬂﬁ , 1<k<IN-
q(N-1) 2
wkl=1 1 ,%(N—I)SkSN—%(N—I) “2)
%{1+cos(2ﬂ—2ﬂ(k_l)—ﬂﬁ , N-dN-p<ks<N
q q(N-D 2
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Qualitative Feature

Range

Patient’s Age

Years (integer)

Mass Existence Yes / No
Microcalcifications

Yes / No
Existence

Fat Percentage

0%...100%

Boundary Sharpness

0%...100%

Mass Density

L (hypo) / M (iso) / H (hyper)

Mass Homogeneity

1...10

Mass Shape Type

1 (round) / 2 (lobulated) /

3 (micro-lobulated)/ 4 (stellate)

Verified Diagnosis

B (benign) / M (malignant)

*#% TABLES & FIGURE LEGENDS *#*

Table 1. Complete list and quantification details for all the qualitative properties, used by the expert physician

when annotating the images in the mammogram database.
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*#% TABLES & FIGURE LEGENDS *#*

Feature Description

86 SDGM contrast, mean, d=3

4 Graylevel mean value

9 SDGM, angular 2nd moment, range, d=1
80 RLM non-uniformity, mean, d=2

82 RLM percentage, mean, d=2

50 SDGM correlation, mean, d=2

92 SDGM invar.diff. moment, mean, d=3
74 RLM short run emphasis, mean, d=2

73 SDGM max.correl.coeff, range, d=2

120 RLM percentage, mean, d=3

Table 2. Top 10 feature selections for the texture datasets of 20-pixel sampling box. Underlines indicate

features also selected in optimal feature combinations by LSMD and LDA classifiers.
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*#% TABLES & FIGURE LEGENDS *#*

Feature Description

80 RLM non-uniformity, mean, d=2
20 SDGM sum of variances, mean, d=1
3 Graylevel max value

90 SDGM sum variance, mean, d=3
81 RLM non-uniformity, range, d=2

6 Graylevel histogram skewness

15 SDGM sum variance, mean, d=1

36 RLM short run emphasis, mean, d=1
63 SDGM entropy, range, d=2

72 SDGM max.correl.coeff, mean, d=2

Table 3. Top 10 feature selections for the texture datasets of 50-pixel sampling box. Underlines indicate

features also selected in optimal feature combinations by LSMD and LDA classifiers.
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*#% TABLES & FIGURE LEGENDS *#*

20-pixel box size 50-pixel box size

LDA LSMD LDA LSMD
texture dataset classifier classifier classifier classifier
distances: {1}

51.1% 55.1% 62.3% 62.3%
Ist order stats: NO
distances: {1,2,3}

60.8% 60.8% 66.8% 66.8%
1st order stats: NO
distances: {1,2,3}

62.6% 62.6% 69.0% 69.0%
Ist order stats: YES

Table 4. Classification results for LDA and LSMD classification against diagnosis, employing exhaustive
combinations search through all the 1023 possible feature subsets of the 10 best MANOVA selections for the

20-pixel and 50-pixel box sizes.
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Fractal Dim. Complete set MANOVA
D, value (dim=120)  top-20 top-10
Qualitative properties set 3.18 - -
Textural features set,

4.10 3.94 3.88
box size: 20 pixels
Textural features set,

4.42 4.28 3.90

box size: 50 pixels

*#% TABLES & FIGURE LEGENDS *#*

Table 5. Correlation fractal dimension (D,) value for the complete and sigmoid fitness function for the

texture dataset of sampling box size of 20 pixels and 50 pixels, for all 120 features and for top-20 or top-10

MANOVA selected features.
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*#% TABLES & FIGURE LEGENDS *#*

Dataset 20-pixel box 50-pixel box
Classifier texture dataset texture dataset
LDA 62.6% 69.0%
LSMD 62.6% 69.0%
K-nn 80.3% 83.6%
NN/RBF 71.3% 72.8%
NN/MLP 74.4% 78.2%
C-SVC/RBF 80.4% 83.9%

Table 6. Best classification percentages of all classifiers for both texture datasets, using the top-10 MANOVA

selections of features. Bold numbers indicate the overall best scores over each dataset.
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*#*% EMBEDDED FIGURES ***

Figure 1. Sample digitized mammogram with one manually segmented suspicious mass.
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*#*% EMBEDDED FIGURES ***

Figure 2. Suspicious region of interest and relative size of 50-pixel box for texture analysis, no box-

interleaving.
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*#*% EMBEDDED FIGURES ***

(b)

Figure 3. (a) Suspicious region of interest and relative size of 20-pixel box for texture analysis with box-
interleaving. In this case, only every second box is used for textural features extraction, i.e., only the non-white

areas in (b).
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@ ) 43221110,

Figure 4. Calculation of texture statistics and gray-level correlations over various pixel-neighboring distances.
Cells indicate pixels, the point Z indicates the current pixel within the sampling box and numbers enumerate
the angular directions in each case, moving in clockwise direction. Using point Z as the center, each pair of
cells with the same number indicate a unique angular direction. Every such pair of pixels is then used to update
the gray-level spatial co-occurrence matrix. For first-order and run-length statistics, the pixel value at point Z

is used instead.
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*#*% EMBEDDED FIGURES ***

FDE=4.101/ (0,Y0)=(1.7 2.6)
T T T

2
T

log(PC(Ri)

Figure 5. PC(r) plot and sigmoid fitness function for the complete texture dataset (dim=120), sampling box

size of 20 pixels (1.270 mm). For X-axis, 1/r was used instead of r for correct (+) sign on the slope value.
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FDE=4.422 / (X0,Y0)=(1.8.2.6)
T T T

Figure 6. PC(r) plot and sigmoid fitness function for the complete texture dataset (dim=120), sampling box

size of 50 pixels (3.175 mm). For X-axis, 1/r was used instead of r for correct (+) sign on the slope value.
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