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ABSTRACT
Driver behaviour profiling, specifically in relation to identifying
‘good’ versus ‘bad’ driving patterns, is one of the most challenging
problems in mobility data analytics. In this paper, the core task
of driver behaviour profiling is addressed at the minimum level
of pre-requisites, i.e., GPS-only trajectory data (no accelerometer
or other sensors) of very low sampling rate (less than 0.1 Hz). A
dynamic temporal resampling algorithm is employed for trans-
forming GPS data into three distinct location-invariant time series,
namely speed, acceleration, and turn rate, after map-matching and
noise elimination pre-processing steps. A wide range of statisti-
cal, time series and spectral methods are implemented as feature
functions or ‘encoders’ of various aspects of short-term mobility
tracking. In our experimental study, a large real-world trajectory
dataset is processed and transformed into such a feature-vector
dataset, which is subsequently used in unsupervised training and
adaptive category identification for the various driving behaviour
‘states’. The proposed approach is designed for online/streaming
mode and lightweight yet powerful analytics. The results show
that such an approach is feasible, despite its challenging context of
constraints, providing a data-driven adaptive way to recognizing
‘normal’ vs. ‘abnormal’ driving patterns on-the-fly.

CCS CONCEPTS
• Computing methodologies → Feature selection; Cluster
analysis; Anomaly detection; • Information systems→ Data
analytics.
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1 INTRODUCTION
Trajectory analytics is one of the most commonly addressed tasks
in the general context of geolocation data mining, usually involv-
ing mobility patterns, mobility graphs, points of interest, hotspot
detection, etc. A special topic that has been advancing steadily over
the past few years is analysing the driving patterns and mobility
dynamics as the driver ‘behaviour’, in the long- and in the short-
term [17, 19]. In the case of long-term analytics, global trends and
aggregated models can be discovered for regional and large-set
statistics regarding driving habits, location- and route-specific risks
of accidents, fuel consumption, delays due to traffic jams, points
of interest (POI), etc. In the case of short-term, which today is the
cornerstone in developing fully-autonomous driving vehicles [20],
‘spot’ analytics of the driving patterns within a limited time frame,
usually no more than few minutes at most, provide hints about
erratic driving, ‘unpredictable’ or risky movements, instantaneous

violations of speed limits, etc. Both these cases are very useful and
challenging research problems, but their context, data modalities
used and inherent methodological approaches are distinct and very
different.

While the long-term approach in Driving Behaviour Profiling
(DBP) has been explored using location-only data, e.g. from sin-
gle GPS sensors, the short-term approach is inherently more de-
manding in terms of spatio-temporal resolution, data quality and
additional sensing modalities. In practice, tracking the movement
of a single car or driver for an entire month to extract commonly
used routes, visited POIs or risk of car crash within this context
is inherently more straight-forward and well-studied than hav-
ing to analyse movement patterns in the context of few minutes
or seconds to distinguish between ‘good’ and ‘bad’ driving. The
short-term case, being more challenging, is normally approached
by employing multi-modal, high-resolution sensing, e.g. location
tracking together with accelerometer measurements, while at the
same time having pre-determined training routes and confirmed
driver ‘events’ as ground truth for model training [9, 21, 31]. How-
ever, these pre-requisites cannot always be satisfied, as multiple
sensing and/or ground truth may not be unavailable, sampling rates
may be too low, etc.

In general, short-term DBP is based on one or more of the fol-
lowing assumptions about the problem setup: (a) multi-modal sens-
ing, typically location plus accelerometer, driver- or environment-
sensing apparatus, etc; (b) high-resolution data especially in the
temporal dimension, typically many samples per second; (c) spe-
cific annotation of ‘good’ and ‘bad’ driving patterns, either with
some pre-determined set of driving ‘events’ that are introduced
during test runs or by the labelling of training samples by a human
expert [31]. In this paper, the most challenging problem setup for
the short-term DBP task is treated, i.e., when none of the previ-
ous assumptions is satisfied: neither (a) multi-modal sensing or (b)
high-resolution data or (c) ground truth are available. This essen-
tially translates into designing unsupervised predictive models for
DBP [1, 33] in the short-term context when having location-only,
sparse, variable-rate, unlabelled data. Additionally, in this work the
methodological approach and the proposed solution is developed
in a way that leads to lightweight and on-the-fly processing, in
order to be able to implement it as online/streaming service, which
is essentially the true importance and value of having short-term
DBP.

In summary, the novelties of this work in the DBP topic are the
following:

• Fully unsupervised, data-driven predictive models for DBP.
• Use of sparse, variable-rate, GPS-only location data as input.
• Online map-matching of the raw input to the road network

& robust noise filtering.
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• Dynamic temporal resampling method for high-quality
fixed-rate upsampling.

• Treatment of three different data series: speed, acceleration,
turn rate.

• Extensive study on feature functions as ‘encoders’ of DBP
patterns.

The rest of the paper is organized as follows: In Section 2 the
short-term DBP, referred to simply as DBP from here on, is clearly
defined in term of the modalities available, the definition of ‘good’
and ‘bad’ driving and the limitations posed by the current ap-
proaches; in Section 3 the complete methodology of the proposed
approach is described in detail, addressing each one of the individual
challenges presented above; in Section 4 the datasets, experimental
protocol and results are presented; in Section 5 the methodology
is discussed in view of the presented results; finally, in Section 6
some conclusions are drawn for the proposed approach and its
applicability to real-world DBP setups.

2 PROBLEM DESCRIPTION
Before the DBP problem is explored in detail in various aspects and
limitations, a more formal definition of the context is required in
relation to ‘good’ and ‘bad’ driving. Although there is no universal
definition of the DBP problem, the most generic aspect that defines
what is the core value at stake is safety, translated as not being
causally involved in car accidents, i.e., not suffering from or causing
them to others [7, 12, 25].

2.1 Defining the problem
In general, there are two sets of specifications or constraints that
dictate if a driving behaviour is safe or not: (a) ‘hard’ limits that
need to be strictly satisfied and (b) ‘soft’ restrictions that indicate
some strong preference. In practice, (a) are regulations defined by
laws and, thus, are almost always quantifiable and in some way
inferred directly from data measurements, as for example over-
speeding is a direct violation of the speed limit in some road. On
the other hand, (b) can be an informal or qualitative description
of safe driving for a single car and the others around it, as for
example avoiding cornering (harsh turns or lateral movements),
harsh accelerating or harsh braking, etc [5, 8, 26, 30]. The first set
of restrictions are typically well-defined and easy to encode into
DBP, however the second set is not; even if these driving events of
interest are formalized and somehow extracted automatically from
the data, a behavioural norm has to also be defined in order for
them to be compared to some safe driving baseline [34, 35].

In view of the relevant literature and the current state-of-the-art,
in this paper the DBP is treated in the context of two specific factors
for road safety:

(1) Speed limits: Driving patterns include checks against over-
speeding conditions; these are hard limits that are available
locally for each road, according to official regulations.

(2) Path predictability: Driving patterns are associated to road
safety at a lower or higher degree according to how pre-
dictable the trajectory of the car is; in other words, the more
predictable a car’s path is, the safer its driving profile is for
everyone (anticipate and avoid the risk of accidents).

It is clear that, in the context of safety as the primary criterion,
both these factors need to be treated in the short-term or ‘spot’
estimations (minutes or seconds), rather than long-term or aggre-
gated ones (over weeks or months). Additionally, the creation of
a well-defined and reliable set of some safe driving baseline to be
used as ground truth, the normal approach of careful planning
and execution of experimental measurements is usually hard to
achieve in real-world driving conditions, as ‘bad’ driving in this
sense would result in risk of causing real accidents. Thus, it is very
hard to precisely plan and execute data generation experiments for
DBP, as it is inherently hard to perform for real with the intention
to record artificial driving ‘violations’.

It should be noted that other criteria for ‘good’ and ‘bad’ driving
may also be applied, including economic factors, environmental
impact, time schedule, etc. However, safety is typically the single
most important factor and the highest priority when viewing the
DBP task in the short-term, e.g. when designing systems for fully
autonomous driving [3, 20].

2.2 Data availability and modalities
Regarding data availability, DBP can be categorized according to
the sensing modalities that are available for use, according to the
triplet of context choices [15]:

• single- or multi-vehicle: Sensing data by/for individual cars,
e.g. location or acceleration [27], versus being able to cor-
relate or simultaneously track multiple cars close by, e.g.
cars inside a buffer zone around it [13, 23].

• without or with driver tracking: Vehicle data may be sup-
plemented with sensors that are tracking actual driver
attributes, e.g. attention drift (eyes), sleepiness (steering
wheel), etc [2, 24].

• without or with environment tracking: Vehicle data may be
supplemented with sensors that are tracking external fac-
tors other than neighbouring cars, e.g. road lines/edges/signs,
obstacles, etc [32].

In real-world DBP applications, there are several limitations that
may arise in relation to one or more of the aspects described above.
The most common one is the lack of additional modalities other
than location tracking and (maybe) accelerometer measurements,
as these are readily available in of-the-shelf portable devices like
typical smartphones [4, 6, 11, 14, 21]. In contrast, any of the other
options usually require special devices installed inside the car (e.g.
tracking cameras), around the car externally (e.g. proximity sensors,
LiDAR), in combination with the other cars in traffic (e.g. inter-
vehicle networking) or in combination with environmental guides
(e.g. UV painting on road edges/signs). For obvious reasons, the
cheapest and most preferable DBP solution would require location-
only data, perhaps accompanied with acceleration measurements
from sensors, if available.

2.3 Novelties of the proposed approach
As previously described, the context of DBP can be very restrictive
in terms of data availability and quality, sensor modalities employed
and the existence of a reliable baseline to be used as ground truth
for the models. Moreover, the type and complexity of the required
processing can be prohibitive for on-the-fly DBP models that need
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to work with new data as they are generated, instead of processing
them offline in batches with little or no processing time restrictions.

This paper presents a new approach to DBP in the short-term
context and with on-the-fly processing in mind. More specifically,
the main focus and contributions in this work are the following:

• Data-driven, purely unsupervised model training, without
any labelled ground truth available.

• Dynamic temporal resampling method for high-quality
fixed-rate upsampling.

• Application of high-quality map-matching to the under-
lying road network and robust noise filtering (pre-/post-
processing).

• Use of sparse (< 0.1 Hz), GPS-only location data of variable
sampling rates for the single-vehicle DBP task.

• Generation of high-quality multi-modal time series from
the GPS data (speed, acceleration, turn rate).

• Instead of simple thresholds, in-depth analysis of the data
series with optimally selected higher-order (‘texture’), curve
and spectral features.

• Association with external data enrichments, e.g. weather
and road/vehicle types, as additional DBP features.

• Employment of multi-stage clustering as ‘blind’ DBP state
tracking, i.e., driving ‘categories’ that are discovered natu-
rally from the data.

• Employment low-complexity, on-the-fly processing, to en-
able DBP applications for online/streaming modes.

This DBP description is essentially addressing the problem at the
minimum level of pre-requisites, i.e., GPS-only trajectory data (no
accelerometer or other sensors) of very low and varying sampling
rate (less than 1 sample per 10 seconds). Before using the input,
the raw GPS location data are map-matched to the underlying road
network and noise-filtered for removal of artifacts, thus providing
high-quality estimations about the actual route and distance trav-
elled within each temporal step in the road network, e.g. calculate
speed using the actual network distance instead of the Euclidean
norm. Additionally, the map-matched location data are supple-
mented with context-related enrichments such as the road speed
limits. This is achieved by a dynamic temporal resampling method
that is employed for transforming the sparse GPS-only trajectory
data into three distinct, optimally upsampled to a fixed-rate and
location-invariant time series, namely speed, acceleration and turn
rate. Additionally, the feature functions are optimally selected for
analysing these reconstructed data series as content-rich ‘encoders’
of DBP patterns but yet lightweight enough to be applicable to
on-the-fly processing architectures.

Given the data restrictions and the challenging setup of the DBP
problem here, only few works from the current best-practices in
DBP are comparable with this proposed approach [5, 17, 19, 25, 34,
35]. The most ‘compatible’ work in terms of unsupervised DBP
categorization via clustering context-sensitive (per road segment)
speed and acceleration descriptive statistics is [33]; this method
is also implemented and included in the experimental work for
providing comparative results in the same dataset, as described in
Section 4.

3 MATERIAL AND METHODS
The overall ‘pipeline’ view of the proposed approach can be sum-
marized in the following sequence of phases:

(1) Map-matching & filtering of the raw GPS data.
(2) Dynamic Temporal Resampling Buffer (DTRB).
(3) Feature extraction for DBP via trajectory analytics.
(4) DBP evaluation based on unsupervised models (clustering).

The following sections describe the methods developed and applied
in each phase.

3.1 Road matching and filtering
As described earlier, instead of using the raw GPS data, the location
points are map-matched against the underlying road network for
removing GPS uncertainty and some of the noise. In practice, the dis-
tances of each point from the nearest road segments are estimated
geometrically using the Haversine function (spherical approxima-
tion) and they are used as input to an online map-matching module
that is based on Hidden Markov Model [10]. This enables the cor-
rection of GPS errors not for single points but for entire sequences
along the ‘most probable’ path in the maximum-likelihood sense.
Furthermore, in this work the core HMM-based map-matching
process has been augmented with an additional step of localized
pre-fetching and thresholding of the underlying OSM network, in
order to speed up the process and avoid singular road matches at
excessive distances (drop the point instead as noise).

Given the map-matched GPS trajectory, with some outlier points
already removed as noise, the ‘most probable’ path is examined for
any ‘spot’ violations against a set of predefined thresholds relevant
to the expected values for distance versus time step. Validity checks
can be asserted as additional post-processing for realistic maximum
speed, acceleration, braking and turn rates, hence any location
points resulting in such violations are also removed as GPS noise.
The end result from this entire process is the maximum-likelihood
‘corrected’ trajectory of the low-resolution GPS track, which is sub-
sequently used as input for the next steps of the proposed method.
Figure 1 illustrates a close-view comparison of the raw GPS location
data (in red) and the map-matched & noise-filtered trajectory (in
blue).

3.2 Dynamic Temporal Resampling Buffer
(DTRB)

The constraint of having sparse GPS-only location data and no
other modality available is one of the most demanding challenges
addressed in this work. The reason is that DBP in the short-term
context requires high-resolution movement analytics, i.e., detection
of over-speed at one moment not on averaged values, ‘spikes’ in
the acceleration or turn rate, etc. Sparse GPS location data do not
provide such information, thus it must be inferred the best way
possible by other means.

The core idea of the DTRB is that the map-matched & filtered
low-resolution GPS track is analysed for detecting sequences where
the sampling rate is adequately high, even for short periods of time
or data ‘slices’. A much higher and fixed sampling rate is applied
and the data series is upsampled with a high-accuracy algorithm,
namely shape-preserving cubic spline interpolation. For each such
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Figure 1: Example of raw GPS data map-matching & filtering
from the dataset used.

slice of sparse GPS location data, the most recent part (temporally)
of its upsampled transformation is used as the basis for producing
the three main data series used here for DBP, i.e., speed, acceleration
and turn rate. These are used as input to the feature extractors in
the next step, which essentially detect, encode and quantify the
properties that are relevant to the DBP task.

The ‘pipeline’ outline of the DTRB algorithm can be described
as follows:

• Continuously scan the incoming location data for ‘dense’
slices.

• When a valid slice is detected, upsample to a fixed rate.
• From the upsampled location data, generate speed, acceler-

ation, turn rate series.
• Perform another set of validity checks for the generated

data series (filtering).
• Forward the processed (3x) data series for feature vector

generation.

Taking all the design constraints into account, as well as the
need to continuously process the input on-the-fly as new GPS
location data arrive, the DTRB algorithm satisfies the following
requirements, re-checked upon every new input:

(1) Input: Wait for new GPS location points (or read next from
offline file).

(2) Spatial span (check): Current slice contains at least 𝑁𝑚𝑖𝑛
𝑠

GPS location points.
(3) Temporal span (check): Current slice spans at least 𝐿𝑙𝑖𝑚𝑠 sec.
(4) Temporal inter-distances (check): Not larger than 𝐿𝑚𝑎𝑥

𝑠 and
not smaller than 𝐿𝑚𝑖𝑛

𝑠 .
(5) Detect gaps: Whenever 𝐿𝑚𝑎𝑥

𝑠 is violated, gap is detected and
the sequence buffer is flushed, keeping only the current
location point.

(6) Short slices: If 𝐿𝑚𝑖𝑛
𝑠 is satisfied and 𝑁𝑠 = 𝑁𝑚𝑎𝑥

𝑠 > 𝑁𝑚𝑖𝑛
𝑠

location points are available, consider the slice as valid even
when its total time span 𝐿𝑠 < 𝐿𝑙𝑖𝑚𝑠 .

(7) Density criterion: As soon as new input results in 𝑁𝑠 ≥
𝑁𝑚𝑖𝑛
𝑠 and 𝐿𝑠 ≥ 𝐿𝑙𝑖𝑚𝑠 and 𝐿𝑚𝑖𝑛

𝑠 , 𝐿𝑚𝑎𝑥
𝑠 are satisfied, the slice

is marked as valid and is forwarded for further processing;
otherwise return and continue from (1).

(8) Upsampling: For every valid slice detected, produce speed
𝑈𝑡 , acceleration 𝐴𝑡 and turn rate 𝑅𝑡 data series from the
GPS location points, upsampled at fixed rate 𝑇𝑠 .

(9) Validation: For each of the three new data series, perform
a set of additional range checks1; discard the slice if any
check is invalidated and return to (1).

(10) Output: If all checks validate ok, use the most recent 𝑛 ·𝑇𝑠
part of the upsampled data series𝑈𝑡 ,𝐴𝑡 , 𝑅𝑡 for DBP feature
vector generation.

The DTRB configuration parameters can be tuned according
to the specific dataset at hand. Considering all these constraints
and after extensive experimentation with the DTRB configuration,
the nominal process is defined as having a slice of least 𝑁𝑚𝑖𝑛

𝑠 = 4
location data points within a span of 𝐿𝑙𝑖𝑚𝑠 = 32 sec, being at least
𝐿𝑚𝑖𝑛
𝑠 = 1 and no more than 𝐿𝑚𝑎𝑥

𝑠 = 32 sec apart. If 𝑁𝑠 = 𝑁𝑚𝑎𝑥
𝑠 = 6

location points and 𝐿𝑚𝑖𝑛
𝑠 is satisfied, then the slice is considered as

valid regardless of 𝐿𝑠 . This means that the total temporal extent of
the slice may be from 𝑁𝑚𝑎𝑥

𝑠 · 𝐿𝑚𝑖𝑛
𝑠 = 6 · 1 = 6 up to 𝑁𝑚𝑖𝑛

𝑠 · 𝐿𝑚𝑎𝑥
𝑠 =

4 · 32 = 128 sec. The upsampling is implemented with using shape-
preserving cubic spline interpolation in the entire slice, the fixed
rate is set to 𝑇𝑠 = 1 sec and the most recent 𝑛 · 𝑇𝑠 = 32 · 1 = 32
sec is the span of the most recent part of the slice that is produced
as output. In general, any upsampling configuration with 𝑛 ·𝑇𝑠 ≥
𝑁𝑚𝑎𝑥
𝑠 · 𝐿𝑚𝑖𝑛

𝑠 is valid. Figure 2 presents a simplified example of
DTRB functionality in various data input conditions.

3.3 Trajectory analytics - feature generation
According to the definition of the DBP task as described in Section 2,
it is clear that at least for the short-term context using simple thresh-
olding in relation to fixed limits, e.g. checking for over-speeding or
against the mean value of speed when traversing a specific road, is
very inefficient. Instantaneous violations can be missed when the
sampling rate of data is too low or when averaged over a temporal
frame that is too large. Most importantly, these threshold-based
methods using simple 1st-order descriptive statistics, e.g. mean
value or standard deviation of speed, max value of acceleration, etc.,
are not adequate in capturing the actual fine-scale properties of the
trajectory, as required for truly effective and robust DBP.

In this work, a very large set of candidate feature functions were
employed as the initial pool of DBP trajectory analytics, ranging
from 1st- and 2nd-order descriptive statistics to curve, spectral and
synthetic features. In summary, this initial feature set included:

• 1st-order statistics: min, max, (arithmetic) mean, median,
mode, stdev, range, skewness, kurtosis, entropy, geometric
mean.

1Range checks: 0 ≤ 𝑈𝑡 ≤ 55.50 m/sec (200 km/h);𝐴𝑡 ≤ 10.29 m/sec2 (0-100 km/h in
2.7 sec); 𝑅𝑡 ≤ 90 deg/sec (1.5708 rad/sec).
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Figure 2: Simplified example of DTRB functionality. Each
node represents a data point (input) and the number in-
side is the |𝑑𝑡 | from the current time 𝑡 = 0 sec. DTRB con-
figuration is: 𝑁𝑚𝑖𝑛

𝑠 = 4, 𝑁𝑚𝑎𝑥
𝑠 = 5, 𝐿𝑚𝑖𝑛

𝑠 = 0.5, 𝐿𝑙𝑖𝑚𝑠 = 3,
𝐿𝑚𝑎𝑥
𝑠 = 2. Upsampling (not shown here) configuration with
any 𝑛 ·𝑇𝑠 ≥ 𝑁𝑚𝑎𝑥

𝑠 ·𝐿𝑚𝑖𝑛
𝑠 = 5 ·0.5 = 2.5 is valid here. Green (dark)

nodes are valid slices for further processing, while yellow
(light) are not.

• Curve statistics: zero-crossings, roughness index, correla-
tion vs. time, linear regression coefficients, curve vs. geo-
metric length.

• Synthetic: ratios between selected 1st-order statistics, e.g.
range vs. stdev.

• Spectral: auto-regressive AR(2) coefficients, signal ‘energy’.
• 2nd-order statistics: Haralick features [18], run-length fea-

tures [28].
• Enrichments: vehicle type, road type, road speed limit.

In the current state-of-the-art in DBP, most works exploit fea-
tures from the 1st-order statistics category, mostly because they
are easy and fast to calculate and straight-forward to interpret
[17, 19, 33]. Some of the curve statistics are also easy to calculate,
but usually less effective or significantly correlated to other 1st-
order statistics, e.g. zero-crossings with standard deviation. To the
best of our knowledge, most of these feature functions have not
been used in this context of DBP, i.e., having only sparse, variable-
rate, GPS-only location data as input. The rationale for the features
described above is that they must capture an information-rich and
‘compressed’ form of the trajectory properties that are directly or
indirectly related to the DBP task at hand.

The entire set of the initial pool of 45 feature functions is applied
separately for each of the three data series, i.e., speed, accelera-
tion and turn rate. In addition, the feature set is supplemented
with several enrichments (e.g. GPS quality), from which three are
DBP-related: vehicle type, road type and road speed limit. The final
feature vector, generated for each valid slice produced by DTRB,
contains 138 features or ‘encoders’ of potential DBP mobility pat-
terns in the short-term context. Also, since all the data restrictions
of the DBP task have already been addressed by the DTRB (sparsity,
noise, road map-matching, upsampling), this feature generation

stage is independent and in general it can be applied to any other
DBP setup. Figure 3 illustrates some of the processing implemented
for translating a very small set of GPS reference points into upsam-
pled data series and feature values extracted from it.

Figure 3: Example of DTRB processing for transforming a
low-resolution variable-rate data ‘slice’ (acceleration) into
an upsampled fixed-rate version and modelling for feature
extraction; blue is the resampled curve length, magenta is
the linear regression trend, green is the mean value, yellow
is the signal energy.

Since in this study the DBP task is addressed in its fully unsuper-
vised mode, the goal is to identify ‘interesting’ features that exhibit
explicit statistical characteristics, for example multi-nomial distri-
butions and/or heavy tails, in order to produce clear data groupings
and/or outlier zones, respectively. The more explicit these charac-
teristics are, the easier it is for unsupervised models to be trained for
detecting ‘normal’ versus ‘abnormal’ categories, as described later
on in Section 3.5. Figure 4 illustrates an example of a feature with
low information content for this task, i.e., very narrow Gaussian
distribution with very low skewness (no heavy left/right tails).

Figure 4: Example of ‘bad’ feature function for DBP (acceler-
ation: 𝐴𝑚𝑒𝑎𝑛

𝑡 ).

On the other hand, Figures 5, 6and 7 are examples of such
information-rich ‘encoders’ of clear and distinct groupings of DBP
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patterns - these are actually the four best-ranked features selected
at the end of the dimensionality reduction process, as described
next in Section 3.4.

Figure 5: Example of ‘good’ feature function for DBP (speed:
𝑈𝐻𝑅14
𝑡 ).

Figure 6: Example of ‘good’ feature function for DBP (speed:
𝑈
𝑔𝑎𝑚𝑟
𝑡 ).

Figure 7: Example of ‘good’ feature function for DBP (speed:
𝑈
𝑣𝑝𝑒𝑛
𝑡 ).

3.4 Dimensionality reduction - feature selection
The initial set of feature functions employed is 45 for each data
series, i.e., speed, acceleration and turn rate, plus three more in-
cluded from data enrichments (vehicle type, road type, road speed
limit), thus resulting in a total of 138, as described in Section 3.3.
This collection of candidate ‘encoders’ of DBP patterns includes
essentially various categories of time series analytics, statistics,
signal processing and image analysis algorithms, adapted here for
1-D data series. Before any model training, the features set has to
be refined and significantly reduced in size, in order to significantly
decrease the dimensionality of the DBP feature vectors dataset and,
thus, the complexity of the models.

Since in this work the DBP problem is addressed in its fully un-
supervised mode (no ground truth available), most of the standard
statistical or heuristic approaches for feature selection are not ap-
plicable, since there is no ‘target’ upon which to investigate the
differentiation between features subsets. Thus, the quality and the
usefulness of each one of the implemented features is a matter of
unsupervised feature selection process, which is a very challenging
task by itself.

The feature selection and dimensionality reduction process con-
sists of a multi-step approach, incorporating statistical ranking,
factor analysis, predictive model evaluation, etc. More specifically,
the first stage was comprised of the following:

(1) Single-variate analysis (SVA): Entropy, kurtosis, quartiles,
standard deviation.

(2) Limits-based analysis (LVA): Adaptive labelling & hypothe-
sis testing against outlier/extreme zones.

(3) Goodness-of-Fit analysis (GoF): Kolmogorov-Smirnov test,
Jarque-Bera test, Lilliefors test.

(4) Multi-variate analysis (MVA): Pairwise correlation, mutual
information, cross-entropy.

(5) Factor analysis (PCA): Principal Component Analysis for
ranking based on eigenvectors.

(6) Fractal dataset analysis (FDA): Intrinsic dataset dimension-
ality analysis.

Next, feature selection via model testing was employed using
the refined subset of 31 features, in order to investigate and identify
even smaller features subsets, still capturing most of the DBP infor-
mation. Finally, a third stage of feature refinement produces further
shrinkage of the dimensionality is achieved (for the dataset of our
study), from 31 down to 4, plus a supplementary subset of poten-
tially useful features that are combined into PCA components, as
described later in Section 3.5. More details regarding the internals of
the feature selection process above are described in the Appendix.

3.5 Unsupervised learning - Clustering
Using the refined features subset from the two-stage selection pro-
cess described in Section 3.4, the design of the unsupervised models
includes clustering. More specifically, K-Means with Euclidean dis-
tance and speed & acceleration statistics as input was implemented
as a reference baseline of the most comparable state-of-the-art ap-
proach in the relevant DBP literature [33]. Additionally, Two-step
clustering with log-likelihood as distance function was employed
in this study [36].
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There are two main reasons why Two-step clustering is selected
as the main algorithm here instead of K-Means. First, it incorpo-
rates a pre-clustering step that enables the automatic selection of 𝑘
for the number of clusters. Second, it incorporates a log-likelihood
function as distance metric instead of the Euclidean distance in
standard K-Means, hence it is more distribution-agnostic. In prac-
tice, this means that the underlying probability distribution for
each dimension is not assumed as strictly Gaussian and, hence,
the cluster boundaries are more well-fitted to the actual training
data. This was verified in the experimental part of this work, where
in very similar clustering setups with K-Means and Two-step al-
gorithms, the second one produced cluster boundaries that were
more orthogonal against each axis (input dimension), i.e., a model
more easily implementable via optimal thresholding per-feature
instead of minimum-distance calculations against the centroids in
the entire feature space.

Furthermore, a multi-stage approach is employed as a composite
clustering model, with each level incorporating a separate Two-step
clustering model using only specific features from the input. The
optimal selection of features in each case is part of the model design
in each clustering level. Again, Silhouette (mostly) and Fisher crite-
rion are employed as quality metrics for the resulting clusterings
and a quantitative ranking method for each setup, as well as some
qualitative assessment by visual analytics and inspection.

In summary, the following clustering levels are trained in a
cascaded form:

• Level-1 (TSL1): Two-step clustering using𝑈𝐻𝑅14
𝑡 and𝑈𝑔𝑎𝑚𝑟

𝑡

as input, resulting in 4 clusters as output.
• Level-2 (TLS2): Two-step clustering using TSL1 cluster id

and𝑈 𝑠𝑝𝑒𝑛
𝑡 as input, resulting in 8 clusters.

• Level-3 (TSL3): Two-step clustering using TSL2 cluster id
and 2 PCA factors as input, resulting in 3 clusters.

In practice, TSL1 uses only two features from the speed data
series, namely𝑈𝐻𝑅14

𝑡 and𝑈𝑔𝑎𝑚𝑟
𝑡 described below, to produce the

first level of clustering; as their corresponding PDFs illustrate in
Figures 5 and 6, these two features effectively produce a very clear
four-cluster setup. Similarly, using the output from TSL1 and 𝑈 𝑝𝑒𝑛

𝑡

as additional input, another two-dimensions input effectively pro-
duces a very clear eight-cluster setup, as described in detail later
on in Section 4. Finally, the additional clustering TSL3 can be in-
corporated for even finer and complementary analysis of the DBP
features, if the processing complexity of PCA is acceptable for the
application at hand. In this case, the input space is PCA-transformed
and, thus, neither the input or the output dimensionality is directly
comparable to the ones employed in TSL1 and TSL2 models.

Some of the feature functions used here are based on 2nd-order
statistics or ‘texture’ of a data series, more specifically the well-
studied set of 14 features that use the Co-Occurrence Matrix (COM)
[18] and 6 features that use the Run-Length Matrix (RLM) [28].
COM is defined as a 𝑁𝑝-by-𝑁𝑝 matrix 𝑝 (𝑖, 𝑗) that counts pairs
of subsequent discrete values {𝑖, 𝑗} = {1, . . . , 𝑁𝑝}, where 𝑁𝑝 is
the number of bins used to discretize the continuous range of the
target variable, i.e., the same per-series data ranges used for the
validity checks in DTRB (see Section 3.2). Similarly, RLM is defined
as a 𝑁𝑝-by-𝑁𝑟 matrix 𝑟 (𝑖, 𝑗) that counts same subsequent discrete
values 𝑖 = {1, . . . , 𝑁𝑝} of sequence lengths or ‘runs’ 𝑗 = {1, . . . , 𝑁𝑟 },

where 𝑁𝑝 is the number of bins used to discretize the continuous
range of the target variable and 𝑁𝑟 is the maximum expected ‘run’.
Whenever the defined 𝑁𝑝 and 𝑁𝑟 discretization lowest or highest
limits are exceeded, the corresponding marginal bins are used for
the counter updates, i.e., value inside or higher/lower than the
discretization limits. The optimal values used in this study were
determined experimentally at 𝑁𝑝 = 5 and 𝑁𝑟 = 10; additionally,
the value ranges for𝑈𝑡 , 𝐴𝑡 and 𝑅𝑡 were scaled down by a factor of
0.5, in order to make COM and RLM more compact and decrease
the counts of such updates in their marginal bins.

The features used in the TSL1 and TSL2 models are the following:
• Maximum Correlation Coefficient: (speed)

𝑈𝐻𝑅14
𝑡 =

√︁
𝜆2 (1)

where 𝜆2 is the second-largest eigenvalue of:

𝑄 (𝑖, 𝑗) =
∑︁
𝑘

𝑝 (𝑖, 𝑘)𝑝 ( 𝑗, 𝑘)
𝑝 𝑗 (𝑖)𝑝𝑖 (𝑘)

(2)

and: 𝑘 = {1, . . . , 𝑁𝑝} , 𝑝 𝑗 (𝑖) =
∑𝑁𝑝

𝑗=1 𝑝 (𝑖, 𝑗),
𝑝𝑖 ( 𝑗) =

∑𝑁𝑝

𝑖=1 𝑝 (𝑖, 𝑗).
• Geometric-to-arithmetic means ratio: (speed)

𝑈
𝑔𝑎𝑚𝑟
𝑡 =

𝑁

√︃∏𝑁
𝑖=1 𝑢𝑖

1/𝑁 ∑𝑁
𝑖=1 𝑢𝑖

(3)

• Road speed penalty factor : (speed)

𝑈
𝑠𝑝𝑒𝑛
𝑡 = 𝑠𝑖𝑔𝑛(𝑈 𝑣𝑝𝑒𝑛

𝑡 − 0.98) (4)

where:

𝑈
𝑣𝑝𝑒𝑛
𝑡 =

𝑈𝑟𝑙𝑖𝑚

max(0,𝑈𝑡 −𝑈𝑟𝑙𝑖𝑚) +𝑈𝑟𝑙𝑖𝑚

(5)

Note that, since all calculations are applied to discrete- rather
than continuous-valued series for 𝑈𝑡 , the term 𝑢𝑖 in Eq.3 is essen-
tially identical to𝑈𝑡 for 𝑖 = 𝑡 .

Regarding the penalty factor related to the (local) road speed
limit, it is 0 < 𝑈

𝑣𝑝𝑒𝑛
𝑡 ≤ 1; in reality, in most cases 0.7 ≤ 𝑈

𝑣𝑝𝑒𝑛
𝑡 ≤

1. When 𝑈𝑡 ≤ 𝑈𝑟𝑙𝑖𝑚 then 𝑈
𝑣𝑝𝑒𝑛
𝑡 = 1, i.e., speed strictly within

the permitted limit, and when 𝑈𝑡 > 𝑈𝑟𝑙𝑖𝑚 then 𝑈
𝑣𝑝𝑒𝑛
𝑡 < 1, i.e.,

𝑈
𝑣𝑝𝑒𝑛
𝑡 =

𝑈𝑟𝑙𝑖𝑚

𝑈𝑡
. Thus, the threshold 𝑈 𝑣𝑝𝑒𝑛

𝑡 ≶ 0.98 is translated to
actual speed 𝑈𝑡 = 𝑈𝑟𝑙𝑖𝑚/0.98 ≈ 1.02 · 𝑈𝑟𝑙𝑖𝑚 or speed at least 2%
over the permitted limit. Here, a hard-thresholded value𝑈 𝑠𝑝𝑒𝑛

𝑡 at
the level 0.98 is used instead of 𝑈 𝑣𝑝𝑒𝑛

𝑡 . This is valid in the sense
that, as described in section 2.1, ‘hard’ regulations e.g. for speed
limits are one of the factors that define the DBP problem.

The features used in the TSL3 model are the first two PCA factors
calculated for the subset of the following eight supplementary
features:

• Value non-uniformity: (speed, acceleration, turn rate)

𝑋𝑅𝐿03
𝑡 =

∑𝑁𝑥
𝑖=1 (

∑𝑁𝑟
𝑗=1 𝑟 (𝑖, 𝑗))2∑𝑁𝑥

𝑖=1
∑𝑁𝑟

𝑗=1 𝑟 (𝑖, 𝑗)
(6)

where:
𝑋𝑡 = {𝑈𝑡 , 𝐴𝑡 , 𝑅𝑡 } (7)
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• Sum entropy: (speed)

𝑈𝐻𝑅08
𝑡 =

2𝑁∑︁
𝑖=2

𝑝𝑥+𝑦 (𝑖) log𝑝𝑥+𝑦 (𝑖) (8)

• Mode-to-mean ratio: (speed)

𝑈
𝑔𝑎𝑚𝑟
𝑡 =

𝑚𝑜𝑑𝑒 (𝑈𝑡 )
1/𝑁 ∑𝑁

𝑖=1 𝑥𝑖
(9)

where 𝑚𝑜𝑑𝑒 (𝑈𝑡 ) is the value where the peak of the PDF
occurs.

• Range-to-stdev ratio: (turn rate)

𝑅𝑟𝑠𝑟𝑡 =
max𝑅𝑡 −min𝑅𝑡√︃∑𝑁
𝑖=1 (𝑥𝑖 − 𝜇𝑥 )2/𝑁

(10)

where 𝜇𝑥 = 1/𝑁 ∑𝑁
𝑖=1 𝑥𝑖 is the mean value of 𝑅𝑡 .

• AR(2) 1st-order coefficient : (speed, acceleration)

𝑋𝑎𝑟1
𝑡 = 𝛼1 , 𝐴(𝑧)𝑋𝑡 = 𝑒𝑡 (11)

where 𝐴(𝑧) = 1 − 𝛼1𝑧−1 − 𝛼2𝑧−2 an AR(2) auto-regressive
model of order 2 for the best-approximation (minimum er-
ror 𝑒𝑡 ) model identification of series 𝑋𝑡 via the Yule-Walker
algorithm [22] and 𝑋𝑡 = {𝑈𝑡 , 𝐴𝑡 }.

Based in this multi-stage clustering approach and the specific
TSLx models designed for each stage, Section 4 describes the ex-
perimental protocol and the results for their assessment, using the
real-world dataset described in Section 4.1.

4 EXPERIMENTS AND RESULTS
4.1 Datasets used
In this work, an extensive real-world trajectory dataset of GPS loca-
tion data is used as the basis, consisting of 977,646 records generated
by special-purpose devices installed in 2,638 large vehicles (trans-
port trucks) travelling in the main urban area of the city of Athens
(Attica region, Greece) for a period of 24 hours in a typical weekday.
More specifically, the dataset was defined within the spatial bound-
ing box: Lat = [37.8860, 38.1057] North / Lon = [23.5591, 23.9128]
East and temporal frame: 2-Nov-2018 (00:00’:00"-23:59’:59"). The
data enrichments supplemented are various parameters regard-
ing the local weather (precipitation, temperature, wind speed &
direction from NOAA) [16], the underlying road network (Open-
StreetMaps – OSM) and the GPS signal quality (number of satellites
tracked, map-matching distance & probability as described next).

4.2 Experimental work & results
The experimental protocol in this study was based on the real-
world dataset described previously.Most of the experimental work
followed the four-phase sequence summarized at the beginning
of Section 3, while some parts required iterations between feature
subset refinement and model design for clustering (see Sections
3.4 and 3.5, respectively). Various hardware/OS2 and software3
platforms were used for the experimental work, some of which is
currently ported to R, Java and Python for open cross-platform use.
2Intel core i7-3537U@2.00GHz & 8GB memory; Intel core i7-8550U@1.80GHz & 32GB
memory; Microsoft Windows 8.1 & 10; Ubuntu Linux 19.04 & 18.4 LTS.
3Mathworks MATLAB v9.4/R2018a (x64); Octave v5.1.0; R v3.6.2; WEKA v3.9.4; IBM
SPSS Modeler v14.1 & Statistics v26; custom Java & C/C++ tools for data import/export.

For DTRB, Figure 8 illustrates the 3-D histogram of number of
extracted valid slices from the data per data points included and per
temporal span used, which was the main guideline for the optimal
configuration of the DTRB parameters for the dataset at hand.

Figure 8: DTRB: Histograms of extracted slices versus data
points and temporal span used.

The results from the reference baseline of the most comparable
state-of-the-art DBP approach [33], using K-Means with Euclidean
distance and speed & acceleration statistics as input, is presented in
Figure 9. This is directly comparable to the TSL1 model, proposed
in this study, with its results presented in Figure 10. It is clear
that in the second case the clusters are significantly enhanced in
terms of shape and separation, while retaining almost the same
discrimination ratios in the dataset, i.e., in the smallest cluster
(‘outliers’).

Figure 9: K-Means reference model: 4 clusters, smallest 4.2%,
silhouette=0.6.

In the second stage of clustering, results from TSL2 are presented
presented in Figure 11. Again, it is evident that with the addition of
one more optimally-selected feature to the TSL1 output, the clusters
become even more well-shaped and separated, almost orthogonally
with centroid very close to the 8 corners of the hypercube.
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Figure 10: TSL1 model: 4 clusters, smallest 8.1%, silhou-
ette=0.9.

Figure 11: TSL2 model: 8 clusters, smallest 3.4%, silhou-
ette=1.0.

Lastly, in the third stage of clustering, results from TSL3 in Figure
12 illustrate the usefulness of adding the PCA-transformed (top 2
factors used) supplementary subset of eightmore optimally-selected
features. Although the quality metric (silhouette) seems worse than
in TSL2 and TSL1, in fact this clustering space embodies the intrinsic
information content of the best 3+8 features, ranging from simple
statistics to spectral model coefficients and for all three data series
(speed, acceleration, turn rate), while at the same time producing
well-defined clusters in a low-dimensionality space (3-D).

5 DISCUSSION
Based on the experimental results, the proposed four-phase method-
ology manages to successfully address all the challenges and data
limitations of this DBP problem specification. DTRB together with
efficient map-matching & filtering enables the necessary quality
enhancement of the low-quality raw input, which otherwise would
be unusable for developing the subsequent phases.

The extensive initial pool of features that are relevant to DBP
patterns were gradually refined by employing both fast statistical

Figure 12: TSL3 model: 5 clusters (balanced), silhouette=0.3.

methods (initially), as well as model testing and heuristics (later on),
in order to end up with only few, very efficient and robust features
subset of DBP pattern ‘encoders’. Additionally, this final selection
includes features of low to moderate computational complexity at
least for TSL1 and TSL2 (no PCA required), with the calculation of
COM and eigenvalue 𝜆2 in Eq.1 being the most demanding. Never-
theless, even in this case the selected COM size (5x5) is adequate
for capturing the core information content from the fairly limited
data involved (32 upsampled data points) and, thus, simple enough
to enable on-the-fly calculations.

Finally, the multi-stage clustering approach provides a solution
of scalable complexity: a very simple model in TSL1 using only
two features; an additional clustering level in TSL2 using context-
relevant data (road speed limit), is such enrichment data are avail-
able; and another, more demanding clustering level TSL3 using 8
additional features with PCA transformation, for low-volume or
offline DBP applications.

6 CONCLUSIONS
In this work, the DBP problem is addressed in the short-term context
and with the most data-restrictive setup, using as input only low-
resolution GPS-only location data of variable sampling rate. The
proposed approach introduces online HMM-basedmap-matching to
the underlying road network and robust noise filtering, as well as an
algorithm for dynamic temporal resampling, to generate upsampled
fixed-rate data series for speed, acceleration and turn rate.

Starting from an extensive set of feature functions, ranging from
simple statistics to spectral and ‘texture’ analytics, the most content-
rich in terms of DBP are selected. For fully unsupervised predictive
modelling, a multi-stage clustering is designed and tested with a
real-world dataset. The results prove the feasibility and effectiveness
of the proposed approach.

Further enhancements of the proposed approach are planned in
relation to the optional integration of data modalities, to exploit
sensor-based acceleration instead of GPS-induced, improved clus-
tering models, designed specifically for on-the-fly processing, as
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well as state-sequencing of the DBP predictive process, to enable
stateful instead of stateless DBP characterization.

Feature selection (details) As described in Section 3.4, the large
initial size of candidate feature functions required a multi-step fea-
ture selection and dimensionality reduction process, incorporating
methods of gradual complexity and descriptive power.

In SVA, entropy and kurtosis of each estimated probability dis-
tribution function (PDF) of each feature via histogram over the
entire dataset was used as hint of non-Gaussianity, similarly to
other established methods, e.g. in blind source separation (BSS) via
Independent Component Analysis (ICA), were kurtosis is a com-
mon choice for testing non-Gaussianity of mixed data sources. In
GoF, three well-established Gaussianity tests, namely Kolmogorov-
Smirnov, Jarque-Bera and Lilliefors, were employed to the PDF of
each feature over the entire dataset. MVA addresses the issues of
correlations and complementarity between pairs of features. Be-
sides the standard Pearson pairwise correlation, mutual information
and cross-entropy were also employed as indices aggregated to per-
feature vectors for ranking against non-redundancy of dimensions.
Additionally, PCA components over the entire dataset and various
subsets of features were analysed in terms of variance explained.
At the end of the analysis above, after aggregating all the individ-
ual feature rankings and identifying consistently ‘good’ features
across multiple analysis methods, the initial set of 138 features was
reduced to 31, i.e, a 4.45:1 shrinkage of the dimensionality.

The refined subset of 31 features was used as input to model-
based evaluation. More specifically, a Expectation–Maximization
(EM) algorithm for fast clustering was employed with several op-
tions for heuristic features subset evaluation. Silhouette and Fisher
criterion [29], were employed as quality metrics for the resulting
clusterings. The significantly reduced final subset of optimal fea-
tures included 3 main plus 8 supplementary candidates, with were
employed as the input in the core TSLx models, as described in
Section 3.5.
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