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Part I: Problem overview & modalitiesPart I: Problem overview & modalities

• A quick tour of the brainA quick tour of the brain

• Magnetic Resonance Imaging (MRI)Magnetic Resonance Imaging (MRI)

• functional MRI and BOLDfunctional MRI and BOLD

• Electroencephalography (EEG)Electroencephalography (EEG)

• Properties & preprocessing of MRI, fMRI, EEGProperties & preprocessing of MRI, fMRI, EEG
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A quick tour of the brainA quick tour of the brain

 ““flatted” cerebrum has an area of flatted” cerebrum has an area of ≈≈2500 cm2500 cm22

 workwork: 25% of glucose, 20% of oxygen, 10: 25% of glucose, 20% of oxygen, 101111 neurons x 10 neurons x 1044 synapses synapses

 core focuscore focus: investigate neurophysiological and cognitive aspects in : investigate neurophysiological and cognitive aspects in 
both normal and pathological cases, understand its structureboth normal and pathological cases, understand its structure

 main problems of interestmain problems of interest: spatial localization of activation areas, : spatial localization of activation areas, 
temporal correlation of activations, identification of Intrinsic temporal correlation of activations, identification of Intrinsic 
Connectivity Networks (ICNs), Connectivity Networks (ICNs), sparsity & “pulsed” neural activationsparsity & “pulsed” neural activation
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The science of MRIThe science of MRI

 the brain is aligned into a 3-D grid of cells (“voxels”)the brain is aligned into a 3-D grid of cells (“voxels”)

 each voxel is excited by a strong magnetic field (modulated)each voxel is excited by a strong magnetic field (modulated)

 k-spacek-space: frequency/phase-matched voxels in brain “slices”: frequency/phase-matched voxels in brain “slices”

(distinct freq. per “column” / phase per “row”, or “spiral” trajectories)(distinct freq. per “column” / phase per “row”, or “spiral” trajectories)

 the recorded signal is the DFT of the measured voxel “values”the recorded signal is the DFT of the measured voxel “values”

(recover the original signal by inverse DFT, inherently complex-valued)(recover the original signal by inverse DFT, inherently complex-valued)

 slices are separated by some gapslices are separated by some gap

to limit “cross-talk” between themto limit “cross-talk” between them

 some voxels are marked as “null”some voxels are marked as “null”

in preprocessing (no tissue)in preprocessing (no tissue)

 result is a 3-D time-varying “hull”result is a 3-D time-varying “hull”

• image size usually 20 cm (diameter)image size usually 20 cm (diameter)
• 64x64 or 128x128 voxels per slice64x64 or 128x128 voxels per slice

(200 / 64 = 3,125 mm voxel size)(200 / 64 = 3,125 mm voxel size)
• slice thickness: 3-5 mm (+1 mm gap)slice thickness: 3-5 mm (+1 mm gap)
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From MRI to functional MRI (fMRI)From MRI to functional MRI (fMRI)

 instead of (static) tissue, measure changes in blood flow in voxelsinstead of (static) tissue, measure changes in blood flow in voxels

 deoxygenated blood has 20% greater magnetic susceptibility (lower MR)deoxygenated blood has 20% greater magnetic susceptibility (lower MR)

 BOLD: “Blood Oxygenation Level Dependent” (measure MR differences)BOLD: “Blood Oxygenation Level Dependent” (measure MR differences)

 increased neural activity increased neural activity ⇒⇒ increased blood flow (oxygenated) increased blood flow (oxygenated)

• HRF: Hemodynamic ResponseHRF: Hemodynamic Response
Function (“system” response)Function (“system” response)

• can be modeled as difference ofcan be modeled as difference of
two gamma distributionstwo gamma distributions

• but not easy to employ as basebut not easy to employ as base
signal proc. “per voxel”signal proc. “per voxel”

• about 2 secs delay from sensoryabout 2 secs delay from sensory
input to actual activationinput to actual activation

• slowly peaking at 6 secsslowly peaking at 6 secs
• if sensory input persists, activationif sensory input persists, activation

gradually decreases (“drift”)gradually decreases (“drift”)
• deactivation to baseline is neededdeactivation to baseline is needed
• whole process: 15-20 secs (cycle)whole process: 15-20 secs (cycle)
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Sources of “noise” in MRISources of “noise” in MRI

 machine-related: electronic (internal), sensory, etc.machine-related: electronic (internal), sensory, etc.

 subject-related: aliasing (internal), respiration & heartbeat (trends), subject-related: aliasing (internal), respiration & heartbeat (trends), 
baseline drift, head motion (MR), volume changes (MR), etc.baseline drift, head motion (MR), volume changes (MR), etc.

 procedure-related: distraction, loss of focus, sensory habituation, etc.procedure-related: distraction, loss of focus, sensory habituation, etc.
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Preprocessing in Preprocessing in fMRIfMRI

 slice timing correction (measurement phase)slice timing correction (measurement phase)

 scanner detrending & equalization (signal stronger at center of MRI)scanner detrending & equalization (signal stronger at center of MRI)

 head motion, brain reshaping, C-R cycles (head motion, brain reshaping, C-R cycles (⇒⇒ affects BOLD accuracy) affects BOLD accuracy)

 spatial & temporal noise is approximately Gamma-distrib.spatial & temporal noise is approximately Gamma-distrib.

 usually apply a 3-10 mm Gaussian smoothing (usually 3x voxel size)usually apply a 3-10 mm Gaussian smoothing (usually 3x voxel size)

General properties of General properties of fMRIfMRI signal signal

 64x64 = 4096 voxels per slice, 7-10 slices per “snapshot” (low res. mode)64x64 = 4096 voxels per slice, 7-10 slices per “snapshot” (low res. mode)

 non-stationary conditions (brain, BOLD), asynchronous propertiesnon-stationary conditions (brain, BOLD), asynchronous properties

 HRF/BOLD/noise different in various brain areas & between subjectsHRF/BOLD/noise different in various brain areas & between subjects

 data are huge in volume, noisy, “multiplexed”, highly correlateddata are huge in volume, noisy, “multiplexed”, highly correlated

 both spatial & temporal resolution is both spatial & temporal resolution is lowlow

 areas of interest (“activated”) are usually no more than 3% of totalareas of interest (“activated”) are usually no more than 3% of total

 spatial/temporal structure of data is not fully understood (“gray box”)spatial/temporal structure of data is not fully understood (“gray box”)
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Components / forms of Components / forms of EEGEEG waves waves

• ““Delta” (up to 4 Hz): when asleep (normal), in lesions (abnormal)Delta” (up to 4 Hz): when asleep (normal), in lesions (abnormal)

• ““Theta” (4-8 Hz): found at locations “activated” for some taskTheta” (4-8 Hz): found at locations “activated” for some task

• ““Alpha” (8-13 Hz): relaxing/thinking (normal), in coma (abnormal)Alpha” (8-13 Hz): relaxing/thinking (normal), in coma (abnormal)

• ““Beta” (13-30 Hz): focused thought, alert (normal), pharmaceuticalsBeta” (13-30 Hz): focused thought, alert (normal), pharmaceuticals

• ““Gamma” (30-100 Hz): cross-sensory processing (normal)Gamma” (30-100 Hz): cross-sensory processing (normal)

 ““Mu” (8-13 Hz): resting-state in motor neuronsMu” (8-13 Hz): resting-state in motor neurons

General properties of General properties of EEGEEG signal signal

 multiples of 1-D time series, 20-100s of electrodes placed on scalpmultiples of 1-D time series, 20-100s of electrodes placed on scalp

 ““surface” measurements (no 3-D modeling), 10surface” measurements (no 3-D modeling), 10μμV-100V-100μμV potentialsV potentials

 modern ADC: 256-512 Hz, most applications require <50 Hz samplingmodern ADC: 256-512 Hz, most applications require <50 Hz sampling

 data are huge in volume, noisy, “multiplexed”, highly correlateddata are huge in volume, noisy, “multiplexed”, highly correlated

 spatial resolution is low, temporal resolution is spatial resolution is low, temporal resolution is highhigh

 spatial/temporal structure of data is not fully understood (“gray box”), spatial/temporal structure of data is not fully understood (“gray box”), 
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• EEGEEG: diagnostic value has been : diagnostic value has been 
proven over the years, but only proven over the years, but only 
supplementary to the doctor’s supplementary to the doctor’s 
clinical evaluation (examination)clinical evaluation (examination)

• doctors can “see” abnormal brain doctors can “see” abnormal brain 
activity in EEG, but the exact activity in EEG, but the exact 
information content can not be information content can not be 
encoded easily into “features”encoded easily into “features”

• Typical diagnostic applications:Typical diagnostic applications:
 epileptic seizures   epileptic seizures         


 Alzheimer’s diseaseAlzheimer’s disease
 coma patientscoma patients
 schizophreniaschizophrenia
• ......

EEG versus fMRIEEG versus fMRI::
((++) much better temporal resolution) much better temporal resolution
((++) less intrusive exam. protocol) less intrusive exam. protocol
((--) “surface” signal, no 3-D modeling) “surface” signal, no 3-D modeling
((--)  inherently a “black box” approach)  inherently a “black box” approach
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Part II: Statistical processing of brain signalsPart II: Statistical processing of brain signals

• Statistical processing of fMRIStatistical processing of fMRI

• Decomposition methods: GLM, PCA, SVD, ICADecomposition methods: GLM, PCA, SVD, ICA

• Multi-subject (group) processing of fMRIMulti-subject (group) processing of fMRI

• Brain functional models (ICN, FNC, dynamics)Brain functional models (ICN, FNC, dynamics)
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Part II: Statistical processing of brain signalsPart II: Statistical processing of brain signals

Statistical processing of fMRIStatistical processing of fMRI

 due to k-space representation, MR signal is inherently complex-valueddue to k-space representation, MR signal is inherently complex-valued

 Stat. correlation or General Linear Model (GLM) often used as baselineStat. correlation or General Linear Model (GLM) often used as baseline

 differences between “resting” and “activation” tested statisticallydifferences between “resting” and “activation” tested statistically

 due to its properties, the signal has to be “demixed” first (decompose)due to its properties, the signal has to be “demixed” first (decompose)

 instead of GLM, decomposition itself can be used as “model”instead of GLM, decomposition itself can be used as “model”

 most commonly used: ICA, SVD, sparse (recently)most commonly used: ICA, SVD, sparse (recently)

 in order to acquire useful clinical results, in order to acquire useful clinical results, multi-subjectmulti-subject methods are used methods are used
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Basic Basic GLMGLM approach on fMRI approach on fMRI

 HRF time courses are assumed known, modeled as “design matrix”: binary HRF time courses are assumed known, modeled as “design matrix”: binary 
components (pulses), convolutions with HRF, etc.components (pulses), convolutions with HRF, etc.

 measured values (voxels) are the combined outputsmeasured values (voxels) are the combined outputs

 a “mixing” (linear) model is calculated:  X = a “mixing” (linear) model is calculated:  X = GG*B + *B + εε

 very restrictive, assumes independent voxels, times courses, same error variances very restrictive, assumes independent voxels, times courses, same error variances 
and same model for all voxels, etc.and same model for all voxels, etc.

 model parameters are compared (stat.signif.) over “resting” and “activating” time model parameters are compared (stat.signif.) over “resting” and “activating” time 
courses to locate actual brain activations (e.g. via thresholding)courses to locate actual brain activations (e.g. via thresholding)

Basic Basic ICAICA approach on fMRI approach on fMRI

 Similar to GLM, only now “sources” are assumed unknownSimilar to GLM, only now “sources” are assumed unknown

 instead, statistical constraints are introduced on them (independency)instead, statistical constraints are introduced on them (independency)

 a “mixing” (linear) model is calculated:  X = a “mixing” (linear) model is calculated:  X = AA*S*S

 measurements are “decomposed” into stat. independent “sources”measurements are “decomposed” into stat. independent “sources”

 used as a generalization of PCA or SVD decomposition (into mutually orthogonal used as a generalization of PCA or SVD decomposition (into mutually orthogonal 
spatio-temporal components)spatio-temporal components)

 with ICA, the components are with ICA, the components are statistically independentstatistically independent  
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Multi-subject (group) processing of fMRIMulti-subject (group) processing of fMRI

 general functional models & brain networks need general functional models & brain networks need multi-subjectmulti-subject processing modes processing modes

 even on a single subject, fMRI data must be concatenated (spatially or temporally)even on a single subject, fMRI data must be concatenated (spatially or temporally)

 ICAICA: spatial (sICA) or temporal (tICA) concat., : spatial (sICA) or temporal (tICA) concat., EEGEEG-based: usually temporal concat.-based: usually temporal concat.

  Similarly, fMRI data from Similarly, fMRI data from 
multiple subjects are to be multiple subjects are to be 
grouped together, it can be:grouped together, it can be:
• spatiallyspatially
• temporallytemporally
• combined (tensors)combined (tensors)

  Alternatively, the ICA (or other) Alternatively, the ICA (or other) 
model parameters can be model parameters can be 
investigated on a 2nd stage of investigated on a 2nd stage of 
processing (e.g. clustering)processing (e.g. clustering)

  For multi-subject, tICA seems For multi-subject, tICA seems 
to work better than sICAto work better than sICA
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Typical steps in group ICA processing (fMRI):Typical steps in group ICA processing (fMRI):

1.1. Data reduction: usually via PCAData reduction: usually via PCA

2.2. Forward estimation: grouping of fMRI data (see prev.)Forward estimation: grouping of fMRI data (see prev.)

3.3. Subject back-projection: “translate” components into brain areasSubject back-projection: “translate” components into brain areas

4.4. Extract functional models: Intrinsic Functional Networks (ICN)Extract functional models: Intrinsic Functional Networks (ICN)
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Recent work: Dynamics of ICNs:Recent work: Dynamics of ICNs:

 main idea: capture and study temporal changes in functional connectivitymain idea: capture and study temporal changes in functional connectivity

 brain connectivity: “anatomical”, “brain connectivity: “anatomical”, “functional”functional”, “, “effective”effective”

 FNC: FNC: functionalfunctional network connectivity (pairwise correlations between ICNs) network connectivity (pairwise correlations between ICNs)

 ““features”: variability of FNC, graph-based approaches (metrics), etc.features”: variability of FNC, graph-based approaches (metrics), etc.

 as a diagnostic tool, differentiate between “normal” and “abnormal” casesas a diagnostic tool, differentiate between “normal” and “abnormal” cases

Part II: Statistical processing of brain signalsPart II: Statistical processing of brain signals

Issues in fMRI data processing:Issues in fMRI data processing:

 ““efficient preprocessing of the data more important than actual prediction efficient preprocessing of the data more important than actual prediction 
method” method” ((⇒⇒ room for powerful ML algorithms as new test base) room for powerful ML algorithms as new test base)

 ““better to start with lower resolution, than with higher + smoothing later”better to start with lower resolution, than with higher + smoothing later”
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Part III: Brain signals & sparsityPart III: Brain signals & sparsity

• Sparsity in brain signalsSparsity in brain signals

• Sparsity and CS in EEGSparsity and CS in EEG

• Sparsity and CS in fMRISparsity and CS in fMRI
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Part III: Brain signals & sparsityPart III: Brain signals & sparsity

Sparsity in brain signalsSparsity in brain signals

 neurons exhibit “pulsed” activation patterns (thresholded)neurons exhibit “pulsed” activation patterns (thresholded)

 temporal sparsity: activation only when stimulated (sensory data)temporal sparsity: activation only when stimulated (sensory data)

 spatial sparsity: localized activation patterns (ICNs)spatial sparsity: localized activation patterns (ICNs)

 usually only 3% of voxels are tagged as “active” in fMRI testsusually only 3% of voxels are tagged as “active” in fMRI tests

 similar sparsity observations in EEG data, but similar sparsity observations in EEG data, but notnot in time domain in time domain

Why use sparse algorithms in EEG, fMRI ?Why use sparse algorithms in EEG, fMRI ?

• Sparse Processing (SP): closely linked to Compressed Sensing (CS)Sparse Processing (SP): closely linked to Compressed Sensing (CS)

• huge volumes of data can be reduced via sparse repr. (mostly in fMRI)huge volumes of data can be reduced via sparse repr. (mostly in fMRI)

• CS has been employed for efficient energy management (EEG)CS has been employed for efficient energy management (EEG)

• tests show that SP is tests show that SP is more robustmore robust than ICA in decomposition (fMRI) than ICA in decomposition (fMRI)
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Sparsity and CS in EEG:Sparsity and CS in EEG:

 ““EEG is non-sparse in time domain”EEG is non-sparse in time domain”

 ““standard compression (e.g. wavelet) not very energy-efficient” (h/w)standard compression (e.g. wavelet) not very energy-efficient” (h/w)

 main ideamain idea: use a : use a dictionarydictionary for the  for the sensingsensing signal (Y= signal (Y=Φ*(Φ*(DD*z)) to “make it” sparse*z)) to “make it” sparse

 BSBL: Block Sparse Bayesian Learning (for block-structure signals)BSBL: Block Sparse Bayesian Learning (for block-structure signals)

 the block-structure is (assumed) not very strict in practicethe block-structure is (assumed) not very strict in practice

 experiments with DCT and DWT dictionary components (D)experiments with DCT and DWT dictionary components (D)

 ButBut: : “if energy consumption is not a problem, full DWT compression is better”“if energy consumption is not a problem, full DWT compression is better”

 BSBL-BO: see [5] : Z. Zhang, B. D. Rao, “Extension of SBL algorithms for the recovery of block 
sparse signals with intra-block correlation”, IEEE Trans. on Sig. Proc. (submitted)
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Sparsity and CS in fMRI:Sparsity and CS in fMRI:

 ““sparsity in (fMRI) signal has been shown to be more promising”sparsity in (fMRI) signal has been shown to be more promising”

 ““non-adaptivity of the canonical HRF is a major problem” (in typical GLM)non-adaptivity of the canonical HRF is a major problem” (in typical GLM)

 main ideamain idea: use sparse GLM with “unknown” (data-driven) design matrix: use sparse GLM with “unknown” (data-driven) design matrix

 Minimum Description Length (MDL) criterion for sparsity level estimationMinimum Description Length (MDL) criterion for sparsity level estimation

 K-SVD as the main sparse decomposition method is employedK-SVD as the main sparse decomposition method is employed
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 Note: the “Inference” part above (F-maps) refers to the activation detection test (brain areas), see [55]:
     B. Ardekani, et.al. “Activation detection in functional MRI using subspace modeling and maximum
     likelihood estimation”, IEEE Trans. Med. Imag., vol.18, n.2, 1999.

Part III: Brain signals & sparsityPart III: Brain signals & sparsity 2727-40-40



ICA versus sparse models (fMRI):ICA versus sparse models (fMRI):

 ““independence is non-adaptive for blind source separation in fMRI signals”independence is non-adaptive for blind source separation in fMRI signals”

 ““the most influential factor for the success of ICA is the most influential factor for the success of ICA is sparsitysparsity (over independence)” (over independence)”

 ““preprocessing and hemodynamics make the components inherently correlated”preprocessing and hemodynamics make the components inherently correlated”

 ““performance of the ICA is very sensitive to noise”performance of the ICA is very sensitive to noise”

 ““sparsity over indep. is supported by biological findings (sparse coding in neurons)”sparsity over indep. is supported by biological findings (sparse coding in neurons)”

 ““proposed method (GLM-based) is more robust, better localization than standard ICA”proposed method (GLM-based) is more robust, better localization than standard ICA”
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ICA versus sparse models (fMRI):ICA versus sparse models (fMRI):

 ““Infomax, FastICA in reality deal with Infomax, FastICA in reality deal with sparsesparse rather than independent components” rather than independent components”

 ““independence is not the right math. framework, sparsity is more natural to brain sig.”independence is not the right math. framework, sparsity is more natural to brain sig.”

 ““sparsity promotes independence, hence algorithms should target that directly”sparsity promotes independence, hence algorithms should target that directly”

 ““Infomax gives slightly (but consistently) better results than FastICA”Infomax gives slightly (but consistently) better results than FastICA”

 ““fMRI experiments should be designed as sparsity-promoting (spatio-temporal)”fMRI experiments should be designed as sparsity-promoting (spatio-temporal)”
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Part IV: Key directions for future workPart IV: Key directions for future work

• open problems in fMRIopen problems in fMRI

• open problems in EEGopen problems in EEG

• related problems in SP & CSrelated problems in SP & CS

• some future issuessome future issues
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Open problems in EEG:Open problems in EEG:

 detection and separation of event-related potentialsdetection and separation of event-related potentials

 brain connectivity models (EEG only or multi-modal)brain connectivity models (EEG only or multi-modal)

 brain connectivity as diagnostic tool (Alzheimer’s disease, chronic fatigue, ...)brain connectivity as diagnostic tool (Alzheimer’s disease, chronic fatigue, ...)

 brain source localization (very difficult with EEG-only)brain source localization (very difficult with EEG-only)

 brain-computer interfacing (nervous injuries, “trained” HCI, ...)brain-computer interfacing (nervous injuries, “trained” HCI, ...)

 EEG fusion with fMRI, mainly data-driven (based on EEG fusion with fMRI, mainly data-driven (based on predictionprediction or  or constraintsconstraints))

 see [5]: B. Cheung, B. Riedner, et. al., “Estimation of cortical connectivity from EEG using state-space
     model”, IEEE Trans. Biomed. Eng., vol.57, n.9, 2010.
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Open statistical challenges in fMRI:Open statistical challenges in fMRI:

 possible application of fractal analysis in 1-D, 2-D, 3-D datapossible application of fractal analysis in 1-D, 2-D, 3-D data

 challenge #1: the classification/prediction task (medical problems, HCI, ...)challenge #1: the classification/prediction task (medical problems, HCI, ...)

 challenge #2: multi-modal techniques (e.g. fMRI/EEG fusion)challenge #2: multi-modal techniques (e.g. fMRI/EEG fusion)

 improvements in fMRI improvements in fMRI data acquisitiondata acquisition, resolution, preprocessing, resolution, preprocessing

 development of non-linear HRF/BOLD modelsdevelopment of non-linear HRF/BOLD models

 multi-subject (group) studies multi-subject (group) studies ⇒⇒ fusion of data, models, results fusion of data, models, results
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Part IV: Key directions for future workPart IV: Key directions for future work 3333-40-40

Sparsity in fMRI acquisition:Sparsity in fMRI acquisition:

 Basic idea: undersample the k-space assumed to be sparse in fMRI, then apply Basic idea: undersample the k-space assumed to be sparse in fMRI, then apply 
effective thresholding & img. quality  constraints (preserve only major components)effective thresholding & img. quality  constraints (preserve only major components)

 ““if the signal/image is to be compressed, is it possible to acquire only a subset of if the signal/image is to be compressed, is it possible to acquire only a subset of 
the original sensory data?”the original sensory data?” (targeted subsampling) (targeted subsampling)

 undersampling artifacts as “power leaks” between components, can be modeled undersampling artifacts as “power leaks” between components, can be modeled 
and removed effectively if they are incoherent (random, not context-relevant)and removed effectively if they are incoherent (random, not context-relevant)

 randomrandom k-space subsampling must be employed, “incoherent sampling trajectories”  k-space subsampling must be employed, “incoherent sampling trajectories” 
in k-space are impractical (h/w) but can be mimicked artificiallyin k-space are impractical (h/w) but can be mimicked artificially

 example: use full freq. (cols) but subsampled phases (rows) in k-space slicesexample: use full freq. (cols) but subsampled phases (rows) in k-space slices

 extension: subsampling can also employ extension: subsampling can also employ variable densityvariable density in k-space  in k-space 

see: Donoho, et.al., “Sparse solution of underdetermined linear equations by stagewise Orthogonal 
             Matching Pursuit” (Donoho, technical report, 2006)

Sparsity in fMRI acquisition:Sparsity in fMRI acquisition:
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Sparsity in fMRI acquisition:Sparsity in fMRI acquisition:



Open problems in Sparsity & Compressed Sensing:Open problems in Sparsity & Compressed Sensing:

 ““Theoretical Frontiers, Model Improvements, Applications”Theoretical Frontiers, Model Improvements, Applications”

 see [53]: S. Nam, M. Davis, I. Elad, R, Gribonval, “The cosparse analysis model and algorithms”, 
     Appl. Comput. Harmon. Anal., (to be published)

• better boundsbetter bounds
• targeting general dictionariestargeting general dictionaries
• theory of dictionary learningtheory of dictionary learning
• unified theory of simplicity measuresunified theory of simplicity measures

• introducing introducing structurestructure (signal) (signal)
• structured dictionaries (components)structured dictionaries (components)
• analysis co-sparse modelsanalysis co-sparse models
• model errors (quality/efficiency)model errors (quality/efficiency)

• sparsity in computer graphicssparsity in computer graphics
• processing processing non-conventional signalsnon-conventional signals        

(e.g. connectivity graphs, social networks)(e.g. connectivity graphs, social networks)
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Other works in Sparsity & CS:Other works in Sparsity & CS:
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Other works in Sparsity & CS:Other works in Sparsity & CS:

Part IV: Key directions for future workPart IV: Key directions for future work 3737-40-40



Other works in EEG, fMRI, etc:Other works in EEG, fMRI, etc:
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Other works in classification/prediction:Other works in classification/prediction:
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Future directions:Future directions:

 Sparsity and CS in fMRI signals (EEG ?) – Sparsity and CS in fMRI signals (EEG ?) – acquisitionacquisition &  & modelingmodeling

 Complex-valued fMRI signal (Complex-valued fMRI signal (⇒⇒ complex ICA, features) complex ICA, features)

 Adaptive algorithms (customized per-modality)Adaptive algorithms (customized per-modality)

 Distributed algorithms (...)Distributed algorithms (...)

 ““deep” analysis of brain signals for training/predictiondeep” analysis of brain signals for training/prediction

 application to real-world cognitive & diagnostic tasksapplication to real-world cognitive & diagnostic tasks

???
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