1-40

Brain Signals & Sparsity

Working Group: Review.

Update on current state-of-the-art of EEG & fMRI
processing with sparsity-aware methods

NKUA/UoA, Athens, February 2013

Harris Georgiou (xgeorgioldi.uoa.gr)



2-40

Outline:

Part I: Problem overview & modalities
Part lI: Statistical processing of brain signals
Part Ill: Brain signals & sparsity

Part IV: Key directions for future work

Review: Brain Signals & Sparsity Athens, February 2013



3-40

Part |I: Problem overview & modalities

* A quick tour of the brain

* Magnetic Resonance Imaging (MRI)

* functional MRI'and BOLD

* Electroencephalography (EEG)

* Properties & preprocessing of MRI, fMRI, EEG

Review: Brain Signals & Sparsity Athens, February 2013
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A quick tour of the brain

B “flatted” cerebrum has an area of =2500 cm?
®  work: 25% of glucose, 20% of oxygen, 10" neurons x 10* synapses

core focus: investigate neurophysiological and cognitive aspects in
both normal and pathological cases, understand its structure

main problems of interest: spatial localization of activation areas,
temporal correlation of activations, identification of Intrinsic

Connectivity Networks (ICNs), sparsity & “pulsed” neural activation
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The science of MRI

the brain is aligned into a 3-D grid of cells (*voxels”)
each voxel is excited by a strong magnetic field (modulated)
k-space: frequency/phase-matched voxels in brain “slices”
(distinct freq. per “column” / phase per “row”, or “spiral” trajectories)
the recorded signal is the DFT of the measured voxel “values”
(recover the original signal by inverse DFT, inherently complex-valued)
slices are separated by some gap
to limit “cross-talk” between them
some voxels are marked as “null”
In preprocessing (no tissue)
result is a 3-D time-varying “hull”
image size usually 20 cm (diameter)
64x64 or 128x128 voxels per slice

(200 / 64 = 3,125 mm voxel size)
slice thickness: 3-5 mm (+1 mm gap)
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From MRI to functional MRI (fMRI)

instead of (static) tissue, measure changes in blood flow in voxels
deoxygenated blood has 20% greater magnetic susceptibility (lower MR)
BOLD: “Blood Oxygenation Level Dependent” (measure MR differences)
increased neural activity [ increased blood flow (oxygenated)

HRF: Hemodynamic Response
Function (“system” response)

can be modeled as difference of
two gamma distributions

but not easy to employ as base
signal proc. “per voxel”

about 2 secs delay from sensory
input to actual activation

slowly peaking at 6 secs

if sensory input persists, activation
gradually decreases (“drift”)

deactivation to baseline is needed

whole process: 15-20 secs (cycle)
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Part |: Problem overview & modalities
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Fig. 3. Experimental paradigms for (a) auditory stimulus tasks, (b) block para-
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Sources of “noise” in MRI

®  machine-related: electronic (internal), sensory, etc.

®  subject-related: aliasing (internal), respiration & heartbeat (trends),
baseline drift, head motion (MR), volume changes (MR), etc.

®  procedure-related: distraction, loss of focus, sensory habituation, etc.
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General properties of fMRI signal

64x64 = 4096 voxels per slice, 7-10 slices per “snapshot” (low res. mode)
non-stationary conditions (brain, BOLD), asynchronous properties
HRFE/BOLD/noise different in various brain areas & between subjects
data are huge in volume, noisy, “multiplexed”, highly correlated

both spatial & temporal resolution is low

areas of interest (“activated”) are usually no more than 3% of total
spatial/temporal structure of data is not fully understood (“gray box”)

Preprocessing in fMRI

v slice timing correction (measurement phase)

v scanner detrending & equalization (signal stronger at center of MRI)

v head motion, brain reshaping, C-R cycles ([0 affects BOLD accuracy)

v spatial & temporal noise is approximately Gamma-distrib.

v usually apply a 3-10 mm Gaussian smoothing (usually 3x voxel size)
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General properties of EEG signal

" multiples of 1-D time series, 20-100s of electrodes placed on scalp

® “surface” measurements (no 3-D modeling), 10uV-100uV potentials

® modern ADC: 256-512 Hz, most applications require <50 Hz sampling
®  data are huge in volume, noisy, “multiplexed”, highly correlated

®  gpatial resolution is low, temporal resolution is high

®  spatial/temporal structure of data is not fully understood (“gray box”),

Components [/ forms of EEG waves

* “Delta” (up to 4 Hz): when asleep (normal), in lesions (abnormal)

* “Theta” (4-8 Hz): found at locations “activated” for some task

* “Alpha” (8-13 Hz): relaxing/thinking (normal), in coma (abnormal)

* “Beta” (13-30 Hz): focused thought, alert (normal), pharmaceuticals
* “Gamma” (30-100 Hz): cross-sensory processing (normal)

> “‘Mu” (8-13 Hz): resting-state in motor neurons
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* EEG: diagnostic value has been
proven over the years, but only
supplementary to the doctor’s
clinical evaluation (examination)

* doctors can “see” abnormal brain
activity in EEG, but the exact
information content can not be
encoded easily into “features™

* Typical diagnostic applications:

v' epileptic seizures > = Y

9 IS

Alzheimer’s disease
coma patients
schizophrenia

DN

() much better temporal resolution
() less intrusive exam. protocol

() “surface” signal, no 3-D modeling
() inherently a “black box” approach
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Part lI: Statistical processing of brain signals

« Statistical processing of fMRI

* Decomposition methods: GLM, PCA, SVD, ICA
* Multi-subject (group) processing of fMRI

* Brain functional models (ICN, FNC, dynamics)

Review: Brain Signals & Sparsity Athens, February 2013
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Statistical processing of fMRI

% due to k-space representation, MR signal is inherently complex-valued

®  Stat. correlation or General Linear Model (GLM) often used as baseline
" differences between “resting” and “activation” tested statistically

® due to its properties, the signal has to be “demixed” first (decompose)

" instead of GLM, decomposition itself can be used as “model”

® most commonly used: ICA, SVD, sparse (recently)

® in order to acquire useful clinical results, multi-subject methods are used

IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 5, 2012

Multisubject Independent Component Analysis of

fMRI: A Decade of Intrinsic Networks, Default
Mode, and Neurodiagnostic Discovery

Vince D. Calhoun, Senior Member, IEEE. and Tiilay Adali, Fellow, IEEE
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Basic GLM approach on fMRI

HRF time courses are assumed known, modeled as “design matrix”: binary
components (pulses), convolutions with HRF, etc.

measured values (voxels) are the combined outputs
a “‘mixing” (linear) model is calculated: X = G*B + ¢

very restrictive, assumes independent voxels, times courses, same error variances
and same model for all voxels, etc.

model parameters are compared (stat.signif.) over “resting” and “activating” time
courses to locate actual brain activations (e.g. via thresholding)

Basic ICA approach on fMRI

Similar to GLM, only now “sources” are assumed unknown

instead, statistical constraints are introduced on them (independency)
a “mixing” (linear) model is calculated: X = A*S

measurements are “decomposed” into stat. independent “sources”

used as a generalization of PCA or SVD decomposition (into mutually orthogonal
spatio-temporal components)

with ICA, the components are statistically independent
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Simple block design
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General Linear Model (GLM)

Voxels 2 “Activation maps”
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Multi-subject (group) processing of fMRI

® general functional models & brain networks need multi-subject processing modes

®  even on a single subject, fMRI data must be concatenated (spatially or temporally)
" |CA: spatial (sICA) or temporal (tICA) concat., EEG-based: usually temporal concat.

=>» Similarly, fMRI data from ~ Spatial ICA (sICA)
multiple subjects are to be Spatially
grouped together, it can be: e o neenfibriEmaps
* spatially
* temporally
* combined (tensors)

Mixing Matrix
(a)

Temporal ICA (tICA)

= For multi-subject, tICA seems
to work better than sICA Time points

=>» Alternatively, the ICA (or other) —
model parameters can be ?:.ed“é‘.iﬁﬂé‘.’u
investigated on a 2nd stage of M mrrers) Hme courses
processing (e.g. clustering) x:;' o
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Typical steps in group ICA processing (fMRI):

Data reduction: usually via PCA
Forward estimation: grouping of fMRI data (see prev.)
Subject back-projection: “translate” components into brain areas

= N =

Extract functional models: Intrinsic Functional Networks (ICN)

Component spatial maps Functional network connectivity (FNC)
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Data Reduction Forward Back Statistical Analysis

* 2 stage PCA Estimation Reconstruction * Spatial maps (voxels)

+ Subject specific - Single subject = PCA-based * Task-relatedness

+ Common space « Group average * Regression-based * Temporal dependence (FNC)
= Temporal concat. * ICA-based * Spatial dependence (MICA)
» Spatial concat. * Spectra
« Tensorial

[CA (Forward Estimation)
Data P4 rca ICA Back-reconstruction through inversion
dre I reductios =)

X | Subjecti
Subject 1

Subject N

1) Regress | g agg |onto each timepoint of Subject i to generate

2) Regress [|A-| onto eachimage of | Subjecti | to generate

Iterate steps 1 & 2 until converged
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Recent work: Dynamics of ICNs:

" main idea: capture and study temporal changes in functional connectivity
* Dbrain connectivity: “anatomical”, “functional”, “effective”

* ENC: functional network connectivity (pairwise correlations between ICNs)
" “features’”: variability of ENC, graph-based approaches (metrics), etc.

* as a diagnostic tool, differentiate between “normal” and “abnormal” cases

Issues in fMRI data processing:

» ‘“efficient preprocessing of the data more important than actual prediction
method” (LI room for powerful ML algorithms as new test base)

> ‘“better to start with lower resolution, than with higher + smoothing later”
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Part lll: Brain signals & sparsity

* Sparsity in brain signals
* Sparsity and CS in EEG
¢ Sparsity and CS in fMRI

Review: Brain Signals & Sparsity Athens, February 2013
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Sparsity in brain signals

neurons exhibit “pulsed” activation patterns (thresholded)
temporal sparsity: activation only when stimulated (sensory data)
spatial sparsity: localized activation patterns (ICNs)

usually only 3% of voxels are tagged as “active” in fMRI tests
similar sparsity observations in EEG data, but not in time domain

Why use sparse algorithms in EEG, fMRI ?

®* Sparse Processing (SP): closely linked to Compressed Sensing (CS)
®* huge volumes of data can be reduced via sparse repr. (mostly in fMRI)
®* CS has been employed for efficient energy management (EEG)

® tests show that SP is more robust than ICA in decomposition (fMRI)
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Sparsity and CS in EEG:

"  “EEG is non-sparse in time domain”

®  “standard compression (e.g. wavelet) not very energy-efficient” (h/w)

®  main idea: use a dictionary for the sensing signal (Y=®*(D*z)) to “make it” sparse
®  BSBL: Block Sparse Bayesian Learning (for block-structure signals)

" the block-structure is (assumed) not very strict in practice

"  experiments with DCT and DWT dictionary components (D)

" But: “if energy consumption is not a problem, full DW'T compression is better”

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 60, NO. 1, JANUARY 2013

Compressed Sensing of EEG for Wireless

Telemonitoring With Low Energy Consumption
and Inexpensive Hardware

Zhilin Zhang”, Tzyy-Ping Jung, Scott Makeig. and Bhaskar D. Rao

= BSBL-BO: see [5] : Z. Zhang, B. D. Rao, “Extension of SBL algorithms for the recovery of block
sparse signals with intra-block correlation”, IEEE Trans. on Sig. Proc. (submitted)
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Sparsity and CS in fMRI:

" “sparsity in (fMRI) signal has been shown to be more promising”

" “non-adaptivity of the canonical HRF is a major problem” (in typical GLM)
®  main idea: use sparse GLM with “unknown” (data-driven) design matrix
®  Minimum Description Length (MDL) criterion for sparsity level estimation
®  K-SVD as the main sparse decomposition method is employed

1076 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 5, MAY 2011

A Data-Driven Sparse GLM for fMRI Analysis Using

Sparse Dictionary Learning With MDL Criterion

Kangjoo Lee, Sungho Tak, and Jong Chul Ye*, Member, IEEE
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Spatial preprocessing
Realignment, Normalization
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Initial Dictionary
DO = Fixed DC [1]+ Data-elements

MDL-based Sparsity Estimation

no : Total nonzero coefficients (no=kN)
n : Number of trained dictionary atoms

MDL(ng) = L(y|ng) + L(ng)

F:

Inference

. Atom from a global dictionary D
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=>» Note: the “Inference” part above (F-maps) refers to the activation detection test (brain areas), see [55]:

_— -J":A'._-‘-._."":F‘l
F-test p<0.001

B. Ardekani, et.al. “Activation detection in functional MRI using subspace modeling and maximum
likelihood estimation”, IEEE Trans. Med. Imag., vol.18, n.2, 1999.
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ICA versus sparse models (fMRI):

>

VV V VYV

‘independence is non-adaptive for blind source separation in fMRI signals”

‘the most influential factor for the success of ICA is sparsity (over independence)”
‘preprocessing and hemodynamics make the components inherently correlated”
‘performance of the ICA is very sensitive to noise”

‘Sparsity over indep. is supported by biological findings (Sparse coding in neurons)”
‘proposed method (GLM-based) is more robust, better localization than standard ICA”
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Independent component analysis for brain fMRI does
not select for independence

I. Daubechies®®1, E. Roussos®, 5. Takerkart®<, M. Benharrosh®, €. Goldenbd, K. D'Ardenne®®, W. Richter®®, J. D. Cohen?®f,
and J. Haxby>f

ICA versus sparse models (fMRI):

" “Infomax, FastICA in reality deal with sparse rather than independent components”

® “independence is not the right math. framework, sparsity is more natural to brain sig.”
= “sparsity promotes independence, hence algorithms should target that directly”

" “Infomax gives slightly (but consistently) better results than FastiCA”

" fMRI experiments should be designed as sparsity-promoting (Spatio-temporal)”
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Part IV: Key directions for future work

* open problems in fMRI

* open problems in EEG

* related problems in SP & CS
* some future issues

Review: Brain Signals & Sparsity Athens, February 2013
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Open problems in EEG:
detection and separation of event-related potentials
brain connectivity models (EEG only or multi-modal)
brain connectivity as diagnostic tool (Alzheimer’s disease, chronic fatigue, ...)
brain source localization (very difficult with EEG-only)
brain-computer interfacing (nervous injuries, “trained” HCI, ...)
EEG fusion with fMRI, mainly data-driven (based on prediction or constraints)

Advances in Electroencephalography Saeid Sanei, Saideh Ferdowsi,

Kianoush Nazarpour, and

Signal Processing Andrzej Cichocki

IEEE 5IGNAL PROCESSING MAGAZINE [170] JANUARY 2013 1053-5888/13/$31.0082013|EEE

=> see [5]: B. Cheung, B. Riedner, et. al., “Estimation of cortical connectivity from EEG using state-space
model”, IEEE Trans. Biomed. Eng., vol.57, n.9, 2010.
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Open statistical challenges in fMRI:
possible application of fractal analysis in 1-D, 2-D, 3-D data
challenge #1: the classification/prediction task (medical problems, HCI, ...)
challenge #2: multi-modal techniques (e.g. fIMRI/EEG fusion)
improvements in fMRI data acquisition, resolution, preprocessing

development of non-linear HRF/BOLD models
multi-subject (group) studies [0 fusion of data, models, results

Statistical Science

In_ulul of b EMAtic al Statistics, 2008

The Statlstlcal Analysis of fMRI Data

Martin A. Lindquist
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Sparsity in fMRI acquisition:

Magnetic Resonance in Medicine 58:1182—1195 [2007)

Sparse MRI: The Application of Compressed Sensing

for Rapid MR Imaging

Michael Lustig‘“‘ David Donoho,? and John M. Pau]}f1

Sparsity in fMRI acquisition:

Basic idea: undersample the k-space assumed to be sparse in fMRI, then apply
effective thresholding & img. quality constraints (preserve only major components)

“If the signal/image is to be compressea, is it possible to acquire only a subset of
the original sensory data?” (targeted subsampling)

undersampling artifacts as “power leaks” between components, can be modeled
and removed effectively if they are incoherent (random, not context-relevant)

random k-space subsampling must be employed, “incoherent sampling trajectories”
in k-space are impractical (h/w) but can be mimicked artificially

example: use full freq. (cols) but subsampled phases (rows) in k-space slices
extension: subsampling can also employ variable density in k-space

=>see: Donoho, et.al., “Sparse solution of underdetermined linear equations by stagewise Orthogonal
Matching Pursuit” (Donoho, technical report, 2006)
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Sparsity in fMRI acquisition:

incoherent artifacts

sparse transform partial k-space




Part IV: Key directions for future work 35-40

Open problems in Sparsity & Compressed Sensing:
“Theoretical Frontiers, Model Improvements, Applications”

* Dbetter bounds * introducing structure (signal)
* targeting general dictionaries * structured dictionaries (components)
* theory of dictionary learning * analysis co-sparse models

* unified theory of simplicity measures * model errors (quality/efficiency)

* sparsity in computer graphics
* processing non-conventional signals
(e.g. connectivity graphs, social networks)

IEEE SIGNAL PROCESSING LETTERS, VOL. 19, NO. 12, DECEMBER 2012

Sparse and Redundant Representation

Modeling—What Next?

Michael Elad, Fellow, IEEE

= see [53]: S. Nam, M. Dauvis, |. Elad, R, Gribonval, “The cosparse analysis model and algorithms”,
Appl. Comput. Harmon. Anal., (fo be published)
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Other works in Sparsity & CS:

IEEE SIGNAL PROCESSING LETTERS. VOL. 19. NO. 12, DECEMBER 2012

Measure What Should be Measured: Progress and
Challenges in Compressive Sensing

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 59, NO. 9, SEFTEMBER 2011

Structured Compressed Sensing:
From Theory to Applications

Marco F. Duarte, Member, IEEE. and Yonina C. Eldar, Senior Member, IEEE

IEEE TEANSACTIONS ON SIGHAL PROCESSING, VOL. 61, NO. 5, MARCH 1, 2013

[Learning Sparsifying Transforms

Saiprasad Ravishankar, Student Member, IEEE, and Yoram Bresler, Fellow, IEEE

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010. June 30 - July 2. 2010. London. U.K.

Sparse Classifier Design Based on the Shapley
Value

Prashanth Ravipally and Dinesh Govindaraj *
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Other works in Sparsity & CS:

IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. 31. NO. 12, DECEMBER. 2012

Compressed Sensing Based Real-Time Dynamic
MRI Reconstruction

Angshul Majumdar*, Rabab K. Ward, and Tyseer Aboulnasr

PERFORMANCE EVALUATION OF ACCELERATED FUNCTIONAL MRI ACQUISITION
USING COMPRESSED SENSING

Hong Jung, Jong Chul Ye

Interpolated Compressed Sensing for 2D Multiple Slice
Fast MR Imaging

Yong Pang'?, Xiaoliang Zhang"****

Small-sample brain mapping: sparse recovery on spatially correlated
designs with randomization and clustering

Gael Varoguaux GAEL.VAROQUAUX@INRIA.FR
Alexandre Gramfort ALEXANDRE.GRAMFORTQINRIA.FR
Bertrand Thirion BERTRAND. THIRIONTQINRIA.FR
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Other works in EEG, fMRI, etc:

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 13, NO. 5, SEPTEMBER 2009

Feature-Based Fusion of Medical Imaging Data

Vince D. Calhoun, Senior Member, IEEE. and Tiilay Adaly, Fellow, IEEE

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 8, AUGUST 2012

Fractional-Order Time Series Models for Extracting
the Haemodynamic Response From Functional

Magnetic Resonance Imaging Data

Kurt Barbé®, Wendy Van Moer, and Guy Nagels

Medical Image Analysis 16 (2012) 976-990
Structural analysis of fMRI data: A surface-based framework
for multi-subject studies

Grégory Operto®, Denis Riviére®, Bernard Fertil?, Rémy Bulot ?, Jean-Francois Mangin ®,
Olivier Coulon®*
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Other works in classification/prediction:

Meural Networks 37 (2013) 1-47

Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and
recognize a changing world”®

Stephen Grossberg*

Pattern Recognition 45 (2012) 2064-2074
Decoding visual brain states from fMRI using an ensemble of classifiers

Carlos Cabral ®, Margarida Silveira *®*, Patricia Figueiredo®®

IEEE TRANSACTIONS ON MEDICAL IMAGING. ¥WOL. 29, NO. 2. FERRUARY 2000 331

Random Subspace Ensembles for fMRI Classification

Ludmila I. Kuncheva*, Member, IEEE, Juan J. Rodriguez, Member, IEEE. Catrin O. Plumpton,
David E. J. Linden, and Stephen J. Johnston

IEEE TRANSACTIONS ON MEDICAL IMAGING. WOL. 29, NO. 1 JANUARY 2000

Comparison of AdaBoost and Support Vector
Machines for Detecting Alzheimer’s Disease

Through Automated Hippocampal Segmentation
Jonathan H. Morra, Zhuowen Tu, Liana G. Apostolova, Amity E. Green, Arthur W. Toga, and Paul M. Thompson*
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Future directions:

®  Sparsity and CS in fMRI signals (EEG ?) — acquisition & modeling

®  Complex-valued fMRI signal (O complex ICA, features)
® Adaptive algorithms (customized per-modality)

" Distributed algorithms (...)

" “deep” analysis of brain signals for training/prediction

®  application to real-world cognitive & diagnostic tasks

UbiComp'11 / Beijing, China
The Social fMRI: Measuring, Understanding, and
Designing Social Mechanisms in the Real World

2272
Nadav Aharony!, Wei Pan’, Cory Ip', Inas Khayal' =, Alex Pentland'
{nadav, panweli, coryip, ikhayal, pentland} @media.mit.edu
'The Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
*Masdar Institute of Science and Technology, Masdar City, Abu Dhabi
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